

UNIVERSIDADE DO SUL DE SANTA CATARINA FRANCISCO ALEXANDRE NETO

ANÁLISE DO EFEITO DAS VARIÁVEIS RADIAÇÃO SOLAR E TEMPERATURA AMBIENTE NO DIMENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO OFF-GRID

Palhoça Francisco Alexandre Neto

FRANCISCO ALEXANDRE NETO

ANÁLISE DO EFEITO DAS VARIÁVEIS RADIAÇÃO SOLAR E TEMPERATURA AMBIENTE NO DIMENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO OFF-GRID

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia Elétrica - Telemática da Universidade do Sul de Santa Catarina como requisito parcial à obtenção do título de Engenheiro Eletricista.

Orientador: Prof. Sheila Santisi Travessa, Dr. a

Palhoça

FRANCISCO ALEXANDRE NETO

ANALISE DO EFEITO DAS VARIAVEIS RADIAÇÃO SOLAR E TEMPERATURA AMBIENTE NO DIMENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO OFF-GRID

Este Trabalho de Conclusão de Curso foi julgado adequado à obtenção do título de Engenheiro Eletricista e aprovado em sua forma final pelo Curso de Engenharia Elétrica -Habilitação em Telemática da Universidade do Sul de Santa Catarina.

Palhoça, 04 de dezembro de 2017. Professor e orientador Sheila Santisi Travessa, Dr. a Eng.a Universidade do Sul de Santa Catarina Professor Fábio Ignacio da Rosa, Eng.º Esp. Universidade do Sul de Santa Catarina Robson Veronezi Campos, Eng.° MSc. Nelson Kakuo Onuki, Eng.º Esp.

Dedico este trabalho aos meus pais, que sempre me apoiaram e me deram todo o suporte necessário.

AGRADECIMENTOS

A Deus, pelas oportunidades de estudo, trabalho e crescimento como pessoa.

Os meus profundos agradecimentos aos meus pais, Francisco e Dalva (*In memoriam*), que sempre me dispensaram muito amor, carinho e incentivo.

A Professora Sheila por ter me orientado na elaboração desse trabalho.

Ao meu amigo Robson pelas inúmeras discussões acerca do tema desse trabalho.

Ao meu amigo e ex-colega de trabalho Nelson por ter me transmitido parte do seu conhecimento profissional.

Aos meus amigos que sempre foram parceiros e nas horas boas e ruins, e aos que conquistei durante o curso, pela amizade e pelos momentos de dificuldade e alegria que passamos juntos.

A todos aqueles que de uma forma direta ou indireta contribuíram para minha formação, tanto profissional como pessoal, o meu muito obrigado!

RESUMO

No atual cenário energético mundial, a procura por fontes de energias alternativas é cada vez mais necessária. A energia solar fotovoltaica é uma dessas fontes alternativas e consiste na conversão da energia radiada pelo Sol em energia elétrica através do uso de módulos fotovoltaicos e, isso é aplicável para sistemas conectados na rede de distribuição de energia (sistemas *on-grid* ou *Grid-Tied*), bem como em sistemas isolados, comumente denominados sistemas *off-grid*. A produção energética de um sistema fotovoltaico *off-grid* pode ser afetada pelas condições climáticas do local de instalação do sistema, radiação solar, temperatura ambiente, bem como pelas características técnicas dos equipamentos que compõem o sistema (módulo fotovoltaico, tipo de tecnologia do controlador de carga e bateria). Neste contexto, o presente trabalho apresenta um estudo do efeito das variáveis radiação solar e temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, bem como os efeitos na produção energética. Adicionalmente descreve-se os principais componentes de um sistema fotovoltaico *off-grid*, sendo estes: módulo fotovoltaico, controlador de carga e sistema de acúmulo de energia (bateria), bem com uma metodologia de dimensionamento para um sistema fotovoltaico *off-grid*.

Palavras-chave: Energia Solar Fotovoltaica. Radiação Solar. Temperatura Ambiente. Controlador de Carga. Módulo Fotovoltaico.

ABSTRACT

In the current global energy scenario, a demand for alternative energy sources is increasingly needed. Photovoltaic solar energy is one of these alternative sources and consists of the conversion of the energy radiated by the Sun into electrical energy through the use of photovoltaic modules and this is applicable for systems connected in the network of distribution of energy (on-grid or Grid- Tied systems), as well as in isolated systems, commonly referred to as off-grid systems. The energy production of an off-grid photovoltaic system can be affected by the climatic conditions of the system installation site, solar radiation, ambient temperature, as well as by the technical characteristics of the equipment used in the system (photovoltaic module, charger controller and battery). In this context, the present work presents a study of the effect of the variables solar radiation and ambient temperature on the design of an off-grid photovoltaic system, as well as the effects on energy production. Additionally the main components of an off-grid photovoltaic system are described, being: photovoltaic module, charger controller and energy accumulation system (battery), and a design methodology for an off-grid photovoltaic system.

Keywords: Photovoltaic Solar Energy. Solar radiation. Environment temperature. Charger Controller. Photovoltaic module.

LISTA DE ILUSTRAÇÕES

Figura 1 – Forma de incidência da radiação solar na superfície	16
Figura 2 – Esquema de uma célula fotovoltaica de silício	19
Figura 3 – Célula fotovoltaica de silício monocristalino	20
Figura 4 – Célula fotovoltaica de silício policristalino	21
Figura 5 – Célula/módulo com a tecnologia de filme fino	21
Figura 6 – Componentes de um módulo fotovoltaico de silício cristalino	22
Figura 7 – Datasheet do módulo fotovoltaico CS6C-150P da Canadian Solar	24
Figura 8 – Associação de módulos fotovoltaicos em série	32
Figura 9 – Associação de módulos fotovoltaicos em paralelo	32
Figura 10 – Esquema simplificado de uma bateria	33
Figura 11 – Estrutura de um controlador de carga com chave série	39
Figura 12 – Estrutura de um controlador de carga com chave paralela	39
Figura 13 – Controlador de carga PWM modelo VS4548BN do fabricante EPsolar	41
Figura 14 – Estrutura de um controlador de carga MPPT	43
Figura 15 – Controlador de carga com MPPT modelo IT4415ND do fabricante EPsolar	45
Figura 16 – Etapas do dimensionamento do sistema fotovoltaico off-grid	47
Figura 17 – Sistema fotovoltaico off-grid	47
Figura 18 – SunData do CRESESB	48
Figura 19 – Base de dados de temperatura utilizado	51
Figura 20 – Planilha de dimensionamento do sistema fotovoltaico off-grid	62
Figura 21 – Inserção dos dados locais, características elétricas da carga, bateria e módulos .	63
Figura 22 – Correção das características elétricas do módulo fotovoltaico, dimensionamento	o do
painel fotovoltaico e dimensionamento do banco de baterias	64
Figura 23 – Dimensionamento do controlador de carga	65
Figura 24 – Lista de equipamentos e produção energética	66

LISTA DE GRÁFICOS

Gráfico 1 – Perfil da irradiância solar ao longo de um dia	17
Gráfico 2 – Produção de corrente pela irradiância	27
Gráfico 3 – Curva I x V em função da variação da temperatura na célula fotovoltaica	28
Gráfico 4 – Curva característica I x V e P x V.	29
Gráfico 5 – Curva I x V para módulos conectadas em série	31
Gráfico 6 – Número de ciclos de carga e descarga em função da profundidade de descarga.	35
Gráfico 7 – Expectativa de vida em função da temperatura.	36
Gráfico 8 — Método Duplo Nível de Tensão	37
Gráfico 9 – Curva de Corrente x Tensão e Curva Potência x Tensão do módulo fotovoltaico	o41
Gráfico 10 – Curvas características do módulo fotovoltaico com e sem sombreamento	43
Gráfico 11 – Operação do módulo fotovoltaico com e sem recurso do MPPT	44
Gráfico 12 – Dados de radiações solares para Florianópolis/SC e entorno	49
Gráfico 13 – Dados de radiação solar para cidade de Florianópolis/SC	50
Gráfico 14 – Gráfico com as temperaturas diárias máximas, médias e mínimas para o mês	s de
junho de 2017	52
Gráfico 15 – Níveis de radiação solar para a cidade de Florianópolis/SC	59
Gráfico 16 – Temperatura ambiente no mês de junho para a cidade de Florianópolis/SC	60
Gráfico 17 – Temperatura ambiente no mês de dezembro para a cidade de Florianópolis/SC	Z
	61
Gráfico 18 - Produção energética em 12 V (controlador PWM) para módulos de 36, 60 e	÷ 72
células	106
Gráfico 19 - Produção energética em 24 V (controlador PWM) para módulos de 36, 60 e	÷ 72
células	107
Gráfico 20 - Produção energética em 48 V (controlador PWM) para módulos de 36, 60 e	÷ 72
células	108
Gráfico 21 – Produção energética em 12 V (controlador de carga MPPT) para módulos de	36,
60 e 72 células	110
Gráfico 22 – Produção energética em 24 V (controlador de carga MPPT) para módulos de	36,
60 e 72 células	111
Gráfico 23 – Produção energética em 48 V (controlador de carga MPPT) para módulos de	36,
60 e 72 células	112

LISTA DE TABELAS

Tabela 1 – Sistemas com módulo de 36 células e 3,73 kWh/m²/dia	70
Tabela 2 – Sistemas com módulos de 60 células e 3,73 kWh/m²/dia	73
Tabela 3 – Sistemas com módulos de 72 células e 3,73 kWh/m²/dia	76
Tabela 4 – Sistemas com módulos de 60 células e 5,05 kWh/m²/dia	82
Tabela 5 – Sistemas com módulos de 72 células e 5,05 kWh/m²/dia	85
Tabela 6 – Sistemas com módulo fotovoltaico de 36 células	89
Tabela 7 – Sistemas com módulo fotovoltaico de 60 células	92
Tabela 8 – Sistemas com módulo fotovoltaico de 72 células	95
Tabela 9 – Sistemas com módulo fotovoltaico de 32 células e radiação em 3,73 kWh/1	n²/dia98
Tabela 10 - Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 kW	'h/m²/dia
	100
Tabela 11 – Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 kW	'h/m²/dia
	103

SUMÁRIO

1 IN	NTRODUÇÃO	12
1.1	JUSTIFICATIVA	13
1.2	OBJETIVOS	13
1.2.1	OBJETIVOS ESPECÍFICOS	14
1.3	METODOLOGIA DA PESQUISA	14
1.4	DELIMITAÇÃO DO PROBLEMA	14
1.5	ESTRUTURA DO TRABALHO	15
2 FU	UDAMENTAÇÃO TEÓRICA	16
2.1	RADIAÇÃO SOLAR	16
2.2	CÉLULAS FOTOVOLTAICAS	18
2.2.1	TIPOS DE CÉLULAS FOTOVOLTAICAS	19
2.2.1.	1 Célula de silício monocristalino	20
2.2.1.	2 Célula de silício policristalino	20
2.2.1.	3 Célula de silício filme fino	21
2.2.2	MÓDULOS FOTOVOLTAICOS	22
2.2.2.	1 Características dos módulos fotovoltaicos	23
2.2.2.	2 Características mecânicas do módulo fotovoltaico	25
2.2.2.	3 Características elétricas dos módulos fotovoltaicos em STC	25
2.2.2.	4 Características elétricas dos módulos fotovoltaicos em NOCT	26
2.2.2.	5 Características térmicas do módulo fotovoltaico	26
2.2.3	EFEITO DA RADIAÇÃO SOLAR NA PRODUÇÃO DE CORRENTE PELO	
MÓD	OULO FOTOVOLTAICO	27
2.2.4	EFEITO DA TEMPERATURA NO MÓDULO FOTOVOLTAICO	27
2.2.5	CURVA CARACTERÍSTICA DE CORRENTE, TENSÃO E POTÊNCIA	29
2.2.6	EFEITO DO SOMBREAMENTO NO MÓDULO FOTOVOLTAICO	30
2.2.7	ASSOCIAÇÕES DE MÓDULOS FOTOVOLTAICOS	31
2.2.7.	1 Associação em série	32
2.2.7.	2 Associação em paralelo	32
2.3	BATERIA PARA SISTEMA FOTOVOLTAICO OFF-GRID	33
	TERMOS RELACIONADOS À BATERIA	
2.3.2	VIDA ÚTIL DA BATERIA	35
2.3.2.	1 Vida útil da bateria em função profundida da descarga	35

2.3.2	2.2 Vida útil da bateria em função da temperatura	.36
2.3.3	3 MÉTODO DE CARGA DE BATERIA DE CHUMBO ÁCIDO	.36
2.4	CONTROLADOR DE CARGA	.37
2.4.	1 TIPOS DE CONTROLADORES DE CARGA	.38
2.4.	1.1 Controladores Convencionais	.38
2.4.	1.2 Controlador eletrônico com a tecnologia PWM	.40
2.4.	1.3 Controlador eletrônico com a tecnologia MPPT	.42
2.5	DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO OFF-GRID	.46
2.6	OBTENÇÃO DOS DADOS DE RADIAÇÃO SOLAR E TEMPERATURA MÉDIA	
DO	LOCAL DA INSTALAÇÃO	.48
2.6.	1 DADOS DE RADIAÇÃO SOLAR	.48
2.6.2	2 DADOS DE TEMPERATURA	.50
2.7	DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO OFF-GRID PELO MÊS	
CON	M O PIOR NÍVEL DE RADIAÇÃO SOLAR	.53
2.8	ESTIMATIVA DO CONSUMO DE ENERGIA	. 54
2.9	DIMENSIONAMENTO DO BANCO DE BATERIAS	. 54
2.10	DIMENSIONAMENTO DO PAINEL FOTOVOLTAICO	.55
2.11	DIMENSIONAMENTO DO CONTROLADOR DE CARGA	.56
2.11	.1 Dimensionamento do controlador de carga PWM	.56
2.11	.2 Dimensionamento do controlador de carga MPPT	.57
	ANÁLISE DAS VARIÁVEIS RADIAÇÃO SOLAR TEMPERATURA AMBIENT	
NO	DIMENSIONAMENTO DE SISTEMA FOTOVOLTAICO OFF-GRID	.59
3.1	DADOS DE RADIAÇÃO E TEMPERATURA PARA FLORIANÓPOLIS	. 59
3.2	PLANILHA PARA O DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO	.61
3.2.	1 INSERSÃO DOS DADOS LOCAIS, CARACTERÍSTICAS ELÉTRICAS DA	
CAI	RGA, BATERIA E MÓDULOS	.63
3.2.2	2 CORREÇÃO DAS CARACTERÍSTICAS ELÉTRICAS DO MÓDULO	
FO	TOVOLTAICO, DIMENSIONAMENTO DO PAINEL FOTOVOLTAICO E DO	
BAN	NCO DE BATERIAS	.64
3.2.3	3 DIMENSIONAMENTO DO CONTROLADOR DE CARGA	.65
3.2.	4 LISTA DE EQUIPAMENTOS E PRODUÇÃO ENERGÉTICA	.66
3.3	EQUIPAMENTOS UTILIZADOS NAS SIMULAÇÕES DOS SISTEMAS	
FOT	TOVOLTAICOS	.67

3.7.1	Sistema com controlador de carga PWM105
CELU.	JLAS, 60 CÉLULAS E 72 CÉLULAS PARA O MÊS DE PIOR RADIAÇÃO SOLAR 105
	COMPARATIVO DE PRODUÇÃO ENERGÉTICA ENTRE MÓDULOS DE 36
-	eratura ambiente em 7°C, 19,07 °C e 30 °C
	Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 kWh/m²/dia e
-	eratura ambiente em 7 °C, 19,07 °C e 30 °C100
	Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 kWh/m²/dia e
_	eratura ambiente em 7 °C, 19,07 °C e 30 °C97
	Sistemas com módulo fotovoltaico de 32 células e radiação em 3,73 kWh/m²/dia e
	MA, MÉDIA E MÁXIMA97
	COMPARATIVO DE PRODUÇÃO ENERGÉTICA ENTRE TEMPERATURA
	m²/dia e temperatura ambiente respectivamente em 19,07 °C e 24,71 °C94
	Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 e 5,05
	m²/dia e temperatura ambiente respectivamente em 19,07 °C e 24,71 °C91
	Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 e 5,05
	m²/dia e temperatura ambiente respectivamente em 19,07 °C e 24,71 °C
	Sistemas com módulo fotovoltaico de 36 células e radiação em 3,73 e 5,05
	ENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO <i>OFF-GRID</i>
	DETERMINAÇÃO DA INFLUÊNCIA DA RADIAÇÃO SOLAR NO
_	peratura ambiente de 14 °C e 38 °C
	Sistemas com módulo fotovoltaico de 72 células e radiação em 5,05 kWh/m².dia.
_	
	eratura ambiente de 14 °C e 38 °C81
-	Sistemas com módulo fotovoltaico de 60 células e radiação em 5,05 kWh/m².dia.
	Sistemas com módulo fotovoltaico de 36 células e radiação em 5,05 kWh/m²/dia. veratura ambiente de 14 °C e 38 °C78
-	
	Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 kWh/m²/dia. veratura ambiente de 7 °C e 30 °C
-	eratura ambiente de 7 °C e 30 °C
	Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 kWh/m²/dia.
	Sistemas com módulo fotovoltaico de 36 células e radiação em 3,73 kWh/m²/dia. eratura ambiente de 7 °C e 30 °C69
	ENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO <i>OFF-GRID</i>
3 <i>4</i> I	DETERMINAÇÃO DA INFLUÊNCIA DA TEMPERATURA NO

3.7.	.2 Sistema com controlador carga MPPT	109
4	CONCLUSÕES E TRABALHOS FUTUROS	114
4.1	CONCLUSÕES	114
4.2	TRABALHOS FUTUROS	117
RE	FERÊNCIAS	118
AN]	NEXOS	120
AN]	NEXO A – <i>DATASHEET</i> DO MÓDULO FOTOVOLTAICO CAN	ADIAN SOLAR
CS6	6C-150P	121
AN]	NEXO B – <i>DATASHEET</i> DO MÓDULO FOTOVOLTAICO CANA	ADIAN SOLAR
CS	6P-260P	122
AN]	NEXO C – <i>DATASHEET</i> DO MÓDULO FOTOVOLTAICO CAN	ADIAN SOLAR
CS6	6U-320P	123
AN]	NEXO D – <i>DATASHEET</i> DO CONTROLADOR DE CARGA PWI	M VS4548BN124
AN]	NEXO E – <i>DATASHEET</i> DO CONTROLADOR DE CARGA MPF	PT IT4415ND125
AN	NEXO F – <i>DATASHEET</i> DA BATERIA ESTACIONÁRIA FREEI	OOM DF2000126

1 INTRODUÇÃO

O processo de transformação da energia vinda do sol em energia elétrica é denominado de efeito fotovoltaico e foi observado em pela primeira vez em 1839 pelo físico francês Alexandre Edmond Becquerel (TREVELIN, 2014).

Uma célula fotovoltaica é composta por dois tipos de semicondutores que são inseridos em uma junção PN e possuem cargas opostas. Quando a energia luminosa na forma de fótons incide nesse dispositivo, cria um movimento de elétrons através da junção PN e possibilitando a circulação de corrente quando há uma carga conectada. A interligação das células em paralelo e/ou série forma um conjunto e, estes podem ser agrupados em arranjos para compor um sistema de maior porte, um módulo fotovoltaico e, consequentemente gerar mais energia elétrica.

Apesar de estar disponível para a humanidade desde o início da vida na Terra, a energia provinda do Sol nunca foi utilizada efetivamente como as demais fontes de energia e foi somente no Século XX, durante a Guerra Fria, na busca por uma fonte de energia alternativa para a alimentação de satélites e veículos espaciais, que houve o maior desenvolvimento e aplicação dos sistemas fotovoltaicos *off-grid* (TREVELIN, 2014).

Os sistemas autônomos, isolados ou *off-grid*, podem ser empregados em locais aonde não há uma rede de energia elétrica ou usados para fornecer eletricidade para residências, iluminação pública, sinalização de estradas, telecomunicações, além de poder oferecer alimentação para veículos elétricos, náuticos, aviões, satélites, entre outras aplicações. Em locais que usam geradores movidos a diesel ou outra fonte de energia para a produção de eletricidade, ou que não possuam uma rede de distribuição, um sistema fotovoltaico *off-grid* pode ser empregado na geração de energia, com a vantagem de causar menos impactos ambientais comparativamente com outras tecnologias (VILLALVA, 2015).

Apesar de seus custos terem caído consideravelmente nos últimos anos, um sistema de geração de energia fotovoltaico ainda apresenta elevados preços se comparado aos métodos que utilizam energias não renováveis. Por ter esse custo mais elevado que os sistemas tradicionais de geração de energia (CONFESSOR, 2014), um sistema fotovoltaico deve ter seu dimensionamento realizado de maneira sistematizada afim de se otimizar a relação custo e benefício para a aplicação a que se destina. Tal dimensionamento engloba o estudo das cargas há qual o sistema irá alimentar, assim como os equipamentos que o compõe, tais como: módulo fotovoltaico, controlador de carga (PWM ou MPPT) e acumuladores. Nesse contexto, o projetista deve considerar as características do potencial de radiação solar e temperatura

ambiente do local de instalação do sistema fotovoltaico *off-grid*, pois isto pode afetar significativamente na quantia de módulos, bem como na escolha da tecnologia (PWM ou MPPT) do controlador de carga. Além disso, deve-se fazer uma análise considerando os vários tipos de módulos de silício, bem como os outros componentes e assim, fazer o uso racional dos equipamentos para maximizar o seu aproveitamento e reduzir custos de implementação. Nesse contexto, é importante entender as variáveis que afetam o dimensionamento do sistema e assim otimizar o gerador fotovoltaico, como também a capacidade de armazenamento da energia.

1.1 JUSTIFICATIVA

No dimensionamento de um sistema fotovoltaico *off-grid* deve-se levar em conta as condições climáticas, radiação solar e temperatura ambiente da localidade da instalação, módulo fotovoltaico e controlador de carga. Cada um desses fatores afeta a produção de energia, ou seja, acaba dando condições para se ter um aumento ou diminuição na produção energética. O conhecimento dessas variáveis e como elas afetam a produção energética, acaba dando condições para que se consiga dimensionar um sistema de maneira a conseguir o seu melhor aproveitamento, além de uma melhor relação custo/benefício, evitando que o sistema não seja subdimensionado ou sobredimensionado.

1.2 OBJETIVOS

Realizar um estudo dos parâmetros que afetam o dimensionamento do sistema fotovoltaico *off-grid* e os seus impactos na produção de energia. Os parâmetros que serão estudados são: nível de radiação solar, temperatura ambiente, quantidade de células que compõem o módulo fotovoltaico e, que pode ser de 36, 60 e 72 células, as tecnologias de controladores de carga PWM e MPPT e os níveis de tensão do sistema que pode ser de 12 V, 24 V e 48 V.

1.2.1 OBJETIVOS ESPECÍFICOS

Dentro do contexto apresentado, pretende-se atingir os seguintes objetivos específicos:

- Descrever os elementos que compõem um sistema fotovoltaico off-grid,
 bem como o funcionamento dos controladores de carga PWM e MPPT;
- Apresentar uma metodologia de cálculo para o dimensionamento do sistema fotovoltaico off-grid;
- Analisar o efeito dos parâmetros (temperatura ambiente, radiação solar, quantidade de células do módulo fotovoltaico, tipo de tecnologia do controlador de carga e o nível de tensão do sistema de 12 V, 24 V e 48 V) no dimensionamento do sistema fotovoltaico *off-grid*.

1.3 METODOLOGIA DA PESQUISA

Para o desenvolvimento desse trabalho, as seguintes etapas foram necessárias:

- Revisão da literatura sobre radiação solar, o princípio de funcionamento dos módulos fotovoltaicos, baterias e controladores de cargas (PWM e MPPT);
- Descrever de uma metodologia de cálculo para o dimensionamento do sistema fotovoltaico considerando o uso de controladores de carga PWM e MPPT e módulos fotovoltaicos com 36, 60 e 72 células disponíveis comercialmente.
- Fazer uma análise comparativa entre os resultados teóricos obtidos para diferentes situações de radiação solar, temperatura ambiente, quantidade de células que compõem o módulo fotovoltaico e os níveis de tensão do sistema de 12 V, 24 V e 48 V e, analisar seus impactos no dimensionamento do sistema fotovoltaico *off-grid* para a cidade de Florianópolis/SC.

1.4 DELIMITAÇÃO DO PROBLEMA

O presente trabalho busca apresentar os elementos que compõem um sistema fotovoltaico *off-grid*, descrevendo o funcionamento dos módulos fotovoltaicos, baterias, controladores de carga PWM e MPPT, bem como utilizar uma metodologia de cálculo para o

dimensionamento de um sistema fotovoltaico considerando as duas tecnologias de controladores e, de forma a verificar o impacto das variáveis que afetam o dimensionamento do sistema fotovoltaico no custo de projeto.

O correto entendimento das variáveis de radiação solar, temperatura ambiente, quantidade de células que compõem um módulo fotovoltaico e a tecnologia do controlador de carga, é importante pois, elas afetam o dimensionamento do sistema, que pode ficar subdimensionado ou sobredimensionado. Este trabalho buscar estudar o efeito dessas variáveis no dimensionando de um sistema fotovoltaico *off-grid* e determinar os seus impactos na produção energética.

1.5 ESTRUTURA DO TRABALHO

O presente trabalho está dividido em quatro capítulos sendo:

O Capítulo 1 apresenta uma breve introdução ao tema, a justificativa, o objetivo, a metodologia e a delimitação do problema.

No Capítulo 2 é feita a fundamentação teórica necessária para o desenvolvimento deste trabalho, sendo apresentado os principais conceitos sobre radiação solar, módulos fotovoltaicos, acumuladores de cargas e controladores de cargas. No Capítulo 2 também é apresentada uma metodologia de cálculo para o dimensionamento de um sistema fotovoltaico considerando o uso de controladores de carga PWM e MPPT, levando em conta o perfil da carga a ser alimentada, dados de radiação solar do local da instalação, a média da temperatura anual do ambiente e a potência do painel fotovoltaico.

No Capítulo 3 a metodologia de cálculo apresentada no Capítulo 2 foi utilizada para simular e verificar os efeitos dos parâmetros de radiação solar, temperatura ambiente, quantidade de células que compõem o módulo fotovoltaico, tecnologia do controlador de carga e o nível de tensão do sistema, no dimensionamento de um sistema fotovoltaico para a cidade de Florianópolis/SC.

Por fim, o Capítulo 4 apresenta as conclusões e considerações finais sobre o estudo teórico dos parâmetros que afetam o dimensionamento do sistema fotovoltaico *off-grid*, em relação aos objetivos propostos, bem como sugestões para trabalhos futuros.

2 FUDAMENTAÇÃO TEÓRICA

Neste capítulo serão apresentados conceitos introdutórios sobre radiação solar, funcionamento do módulo fotovoltaico, bem como os tipos de módulos presentes no mercado. Além disso serão apresentados os acumuladores de cargas utilizados em sistemas fotovoltaicos *off-grid*, bem como o funcionamento, os tipos de controladores de cargas e será apresentado uma metodologia de cálculo que irá auxiliar na análise dos impactos das variáveis de radiação solar e temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*.

2.1 RADIAÇÃO SOLAR

O Sol fornece anualmente, para a superficie terrestre, 1,5125 x 10¹⁸ kWh de energia. Essa energia é transmitida na forma de radiação eletromagnética, sendo composta por aproximadamente de 50 % de luz visível, 45 % de radiação invisível infravermelha e 5% de radiação invisível ultravioleta. O conjunto de todas as frequências de ondas eletromagnéticas emitidas pelo Sol, transporta energia que pode ser captada na forma de calor ou luz, recebe o nome de radiação solar (KALOGIROU, 2016).

Para a análise da radiação na superfície terrestre é importante o conhecimento da intensidade da radiação e de sua composição. A radiação solar incidente no limite superior da atmosfera terrestre sofre uma série de reflexões, dispersões e absorções (provocados pelas moléculas de ar, vapor, poeira e nuvens) durante o seu percurso até o solo. Por isso, a radiação solar que atinge a superfície terrestre e incide sobre o solo é a soma das componentes direta e difusa.

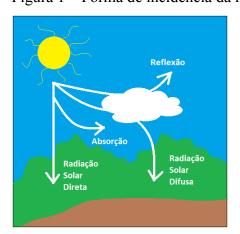


Figura 1 – Forma de incidência da radiação solar na superfície

Fonte: o autor.

A radiação direta corresponde a radiação proveniente diretamente da superfície solar, ou seja, é aquela que não sofreu alteração de direção. A radiação difusa é aquela recebida por um corpo após a direção dos raios sofrerem mudança de direção na atmosfera e da reflexão da luz na poeira, nas nuvens e em outros objetos.

A irradiância, também chamada de irradiação, é uma grandeza utilizada para a realizar a avaliação da radiação solar que chega há uma determinada superfície e sua unidade é expressa por W/m² (watt por metro quadrado). Na superfície terrestre a irradiância, em condições atmosféricas ótimas, ou seja, sem nuvens, é próximo de 1000 W/m², enquanto que fora da atmosfera terrestre é cerca de 1353 W/m² (VILLALVA, 2015).

1000 - 10

Tempo (horas)

Gráfico 1 – Perfil da irradiância solar ao longo de um dia

Fonte: o autor.

O Gráfico 1 apresenta a curva de irradiância ao longo de um dia e, a área abaixo da curva indica o valor da energia recebida do Sol durante um dia para um determinado local. Esse valor pode também pode ser definido em **Horas de Sol Pleno (HSP)** ou **Horas de Sol Pico.** O HSP reflete o número de horas, por dia, em que a irradiância permanece igual a 1000 W/m². Por exemplo, para a região da Grande Florianópolis a média anual de energia acumulada por dia, no plano horizontal, é de 4,24 kWh/m²/dia e esse valor, expresso em HSP, é igual a 4,24 h/dia, ou seja, durante um dia temos 4,24 horas em que a irradiância é igual a 1000 W/m².

$$HSP = \frac{4.24 \text{ kWh/m}^2}{1 \text{ kW/m}^2} = 4.24 \text{ horas/dia}$$
 (1)

2.2 CÉLULAS FOTOVOLTAICAS

O efeito fotovoltaico é um fenômeno físico que permite a obtenção de energia elétrica, através da conversão direta da energia contida na radiação luminosa, pelo material semicondutor de que é formada a célula fotovoltaica. Este fenômeno foi observado pela primeira vez pelo físico francês Edmond Becquerel no ano de 1839 e ocorre em semicondutores que possuem a capacidade de absorver a energia presente nos fótons, do espectro luminoso, transformando-a em eletricidade (ZILLES, 2012). Esse efeito causa o aparecimento de uma diferença de potencial nas extremidades do material semicondutor produzida pela absorção da luz. Essa diferença de potencial devesse ao fato de que a célula fotovoltaica ser formada por um material semicondutor, onde uma metade do material é dopado com elementos que o deixem com ausência de elétrons, tipo P, e, na outra metade com excesso de elétrons, tipo P, formando uma junção PN.

Através da energia luminosa provinda do Sol na forma de fótons, e tendo esses energia suficiente, cria-se um movimento de elétrons através da junção PN (célula fotovoltaica), que resulta no aparecimento de uma corrente elétrica. Se não houver um caminho elétrico entre a junção PN, os elétrons não podem circular e logo não haverá uma corrente elétrica. Porém, mesmo sem a presença da corrente elétrica, é possível observar uma tensão elétrica de 0,5 V a 0,8 V entre os terminais da célula fotovoltaica, causada pelo campo elétrico entre as camadas PN (VILLALVA, 2015).

As células fotovoltaicas comerciais são compostas de duas camadas de elementos semicondutores P e N, uma grade com coletores metálicos na parte superior e, uma base metálica na parte inferior. A grade e a base fazem a coleta da corrente elétrica produzida pela incidência da energia luminosa. A parte superior da célula fotovoltaica tem que ser translúcida para receber a luz, por isso contatos elétricos são formados por uma fina grade metálica impressa na célula. A parte inferior é formada por uma película que pode ser de prata ou alumínio (VILLALVA, 2015).

A Figura 2 apresenta a estrutura básica de uma célula fotovoltaica de silício, aonde pode-se destacar: a região tipo N (1); região do tipo P (2); região de carga (3), aonde se forma a junção PN e o campo elétrico; geração de par elétron-lacuna (4); filme antirreflexo (5); grade metálica (6).

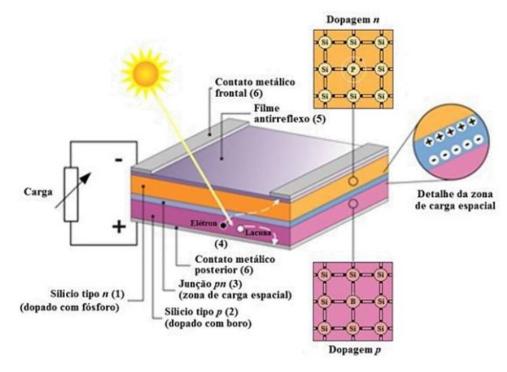


Figura 2 – Esquema de uma célula fotovoltaica de silício

Fonte: CEPEL - CRESEB, 2014.

Uma célula fotovoltaica sozinha produz pouca energia, então várias células são agrupadas para produzir uma maior quantidade de energia, sendo este agrupamento chamado de módulo fotovoltaico. O módulo fotovoltaico é constituído de um conjunto de células montadas sobre uma estrutura rígida e conectadas eletricamente em série para que possa produzir tensões maiores.

O silício é o material semicondutor mais utilizado na fabricação de células fotovoltaicas, pois sua fabricação já está bem desenvolvida, por ser uma matéria-prima abundante e barata, e por ser um material não tóxico (VILLALVA, 2015).

2.2.1 TIPOS DE CÉLULAS FOTOVOLTAICAS

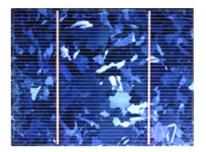
As células fotovoltaicas de silício mais conhecidas são: células de silício monocristalino, células de silício policristalino e, células de filme fino. As seções subsequentes apresentam as principais características de cada tipo de célula fotovoltaica.

2.2.1.1 Célula de silício monocristalino

A célula de silício monocristalino é produzida a partir de silício com alto grau de pureza e é proveniente de um cristal uniforme e único. Devido a esse alto grau de pureza, a célula de silício monocristalino está entre as mais eficientes do mercado e também as que possuem os maiores valores de custo (LOPEZ, 2012).

Este tipo de célula possui eficiência de 15 % a 19 %, apresenta um aspecto uniforme e normalmente sua cor varia de um azul escuro ao preto ou outra coloração dependendo do tratamento antirreflexivo que recebe. Em função de sua característica construtiva este tipo de célula é quebradiça e rígida, e por conta disso, precisa ser montada em uma estrutura que garanta resistência mecânica para viabilizar o uso prático.




Figura 3 – Célula fotovoltaica de silício monocristalino

Fonte: CEPEL - CRESEB, 2014.

2.2.1.2 Célula de silício policristalino

As células de silício policristalino são cortadas de cristais de silício multifacetados e possuem aparência heterogênea sendo normalmente encontradas na cor azul. Este tipo de célula é a mais comum no mercado, e por conta da sua eficiência de 13 % a 15 %, apresenta um custo inferior quando comparadas com células do tipo silício monocristalino. Em função de sua característica construtiva este tipo de célula é quebradiça e rígida, e por conta disso, precisam ser montadas em uma estrutura que garanta resistência mecânica para viabilizar o uso prático.

Figura 4 – Célula fotovoltaica de silício policristalino

Fonte: CEPEL - CRESEB, 2014.

2.2.1.3 Célula de silício filme fino

A célula de silício de filme fino possui uma tecnologia mais recente que a célula cristalina e, sua fabricação ocorre através da deposição de finas camadas de silício, sobre uma estrutura que pode ser flexível ou rígida. Este tipo de célula pode ser produzido em qualquer tamanho e por essa razão não há uma distinção entre células fotovoltaicas e módulos fotovoltaicos.

Apesar de ter um custo menor que célula fotovoltaica cristalina, as células fotovoltaicas de filmes finos possuem eficiência da ordem de 10 % e por isso necessitam de uma maior área para produzir a mesma quantia de energia, comparativamente com as tecnologias cristalinas (VILLALVA, 2015).

Figura 5 – Célula/módulo com a tecnologia de filme fino

Fonte: CEPEL - CRESEB, 2014.

2.2.2 MÓDULOS FOTOVOLTAICOS

Um módulo fotovoltaico é composto por um conjunto de células conectadas em série e/ou paralelo, para produzir corrente e tensão maiores e montadas em uma estrutura que promove a proteção das células. A Figura 6 apresenta os componentes de um módulo fotovoltaico de silício cristalino.

Moldura de Alumínio
 Vidro Especial
 Encapsulante - EVA
 Células Fotovoltaicas
 Encapsulante - EVA
 Lâmina de suporte
 Caixa de Junção com cabos e conectores do tipo MC4

Figura 6 – Componentes de um módulo fotovoltaico de silício cristalino

Fonte: Adaptado de Portal Solar.

- Moldura de Alumínio: usualmente de alumínio anodizado, conferindo ao módulo fotovoltaico a rigidez mecânica e facilitando a fixação;
- Vidro Especial: é vidro temperado de baixo teor de ferro e de alta transparência, reduzindo assim as perdas por absorção;
- Encapsulante: polímero termoplástico transparente, eletricamente isolante
 e resistente à umidade, fadiga mecânica e à ação da radiação solar
 (principalmente raios UV). O material mais utilizado é o EVA (Etil Vinil
 Acetato);
- Células fotovoltaicas: conjunto elétrico do módulo fotovoltaico;
- Lâmina de suporte: o material mais utilizado é o PVF (fluoreto de polivinil), conhecido comercialmente como Tedlar;
- Caixa de junção: é o local onde são abrigados os diodos de by-pass, e as conexões dos conjuntos de células em séries;
- Cabos e conectores do tipo MC4: são cabos isolados adequados para a
 máxima tensão do sistema e são capazes de suportar intempéries. Os
 conectores são do tipo MC4 que permite o engate rápido, para facilitar a
 instalação e garantir uma boa conexão.

2.2.2.1 Características dos módulos fotovoltaicos

Os módulos fotovoltaicos, em função do seu aspecto construtivo, podem apresentar corrente e tensão nominal diferentes, dependendo do tipo de associações das células que o compõem. Tipicamente, um módulo pode ter 36, 54, 60 ou mais células, e isso depende da sua classe de potência, ou seja, quanto maior for a quantidade de células maior será a potência do módulo fotovoltaico.

Os fabricantes de módulos fotovoltaicos disponibilizam *datasheets* com informações elétricas, mecânicas e outras informações relevantes sobre os módulos fotovoltaicos. O módulo fotovoltaico é comumente caracterizado pela sua potência elétrica de watt-pico (Wp), porém outros conjuntos de características devem ser observadas. A potência pico do módulo fotovoltaico é obtida através de ensaios laboratoriais com as condições-padrão de teste STC (*Standard Test Conditons*), aonde a radiação solar é de 1000 W/m², o espectro de radiação solar distribuído em uma massa de ar de 1,5 AM (*Air Mass*) e a temperatura da célula fotovoltaica em 25 °C com uma tolerância de ± 2 °C (VILLALVA, 2015).

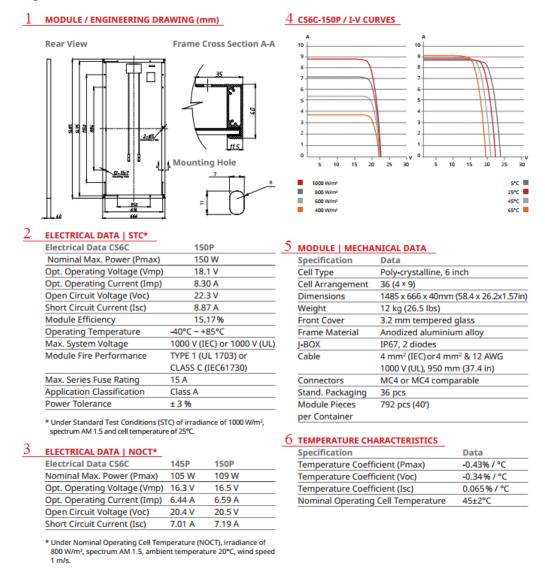


Figura 7 – Datasheet do módulo fotovoltaico CS6C-150P da Canadian Solar

Fonte: Canadian Solar.

A Figura 7 apresenta o *datasheet* do módulo fotovoltaico CS6C-150P do fabricante *Canadian Solar*. Os itens 1 e 5 do *datasheet* apresentam as características mecânicas do módulo fotovoltaico. O item 2 apresenta as características elétricas do módulo nas condições-padrão de teste STC (*Standard Test Conditons*). Esses dados são utilizados no dimensionamento do sistema fotovoltaico *off-grid*. O item 3 apresenta as características elétricas em NOCT. O item 4 indica as curvas de tensão e corrente conforme as condições climáticas a qual o módulo fotovoltaico está exposto e o item 6 indica os coeficientes de temperatura do módulo fotovoltaico. Esses itens serão apresentados nas seções seguintes.

2.2.2.2 Características mecânicas do módulo fotovoltaico

Os itens 1 e 5 da Figura 7 apresentam as características mecânicas do módulo fotovoltaico CS6C-150P. Nesses itens é possível encontrar informações sobre o dimensional do módulo e o seu desenho mecânico, peso, quantidades de células, quantidades de diodos de *by-pass*, informações sobre a caixa de junção e dos cabos e conectores.

2.2.2.3 Características elétricas dos módulos fotovoltaicos em STC

No item 2 da Figura 7 encontra-se os dados elétricos do módulo fotovoltaico, obtidos em STC (*Standard Test Conditions*), e essas informações são importantes para o dimensionamento de um sistema fotovoltaico. Neste item está presente as seguintes informações:

- Tensão de circuito aberto (V_{oc}) é o valor da tensão elétrica, em volts (V), medida quando não há cargas conectadas ao módulo.
- Corrente de curto-circuito (*I_{sc}*) é a corrente elétrica, em ampères (A), quando os terminais do módulo estão conectados entre si formando um curto-circuito.
- Corrente de máxima potência (I_{MP}) é a corrente elétrica máxima produzida pelo módulo em STC.
- Tensão de máxima potência (V_{MP}) é tensão máxima que o módulo pode fornecer em STC.
- Potência pico (P_{MP}) é a máxima potência que o módulo pode fornecer em STC.
- Eficiência do módulo (η) é a eficiência do módulo em converter a energia luminosa em energia elétrica e pode ser dada pela Equação 2.

$$\eta_p = \frac{P_{MP}}{A_p \times G} \times 100 \,(\%) \tag{2}$$

Onde:

 P_{MP} – Potência máxima do módulo fotovoltaico em STC;

 A_p – Área do módulo em m² e;

G – Radiação solar de 1000W/m² em STC.

2.2.2.4 Características elétricas dos módulos fotovoltaicos em NOCT

Outras características elétricas que pode-se obter através do *datasheet* de um módulo fotovoltaico, e no caso do CS6C-150P encontra-se no item 3, são as características elétricas em NOCT (*Normal Operation Cell Temperature*). A NOCT indica os valores mais próximos das condições reais de funcionamento do módulo fotovoltaico. Nessa condição a temperatura da célula é de 48,4 °C e a radiação solar é de 800 W/m², espectro solar distribuído em uma massa de ar 1,5 AM, sendo esses valores definidos pelos fabricantes e órgãos internacionais de certificação e normatização (CRESESB, 2014).

2.2.2.5 Características térmicas do módulo fotovoltaico

O item 6 do *datasheet* (Figura 7) do módulo fotovoltaico apresenta as características térmicas do módulo e, como ele se comporta diante de variações de temperatura, tais quais:

- γ (Pmp) É o coeficiente de temperatura para a correção da potência máxima em função da influência da temperatura sobre as células fotovoltaicas. Esse coeficiente é negativo pois a potência elétrica gerada diminui com o aumento da temperatura. Para o módulo CS6C-150P esse coeficiente é de -0,43 % / °C.
- β (Voc) É o coeficiente de temperatura para a correção da tensão em função da influência da temperatura sobre as células fotovoltaicas. Esse coeficiente é negativo pois a tensão elétrica gerada diminui com o aumento da temperatura. Para o módulo CS6C-150P esse coeficiente é de -0,34 % / °C.
- α (Isc) É o coeficiente de temperatura para a correção da corrente em função da influência da temperatura sobre as células fotovoltaicas. Esse coeficiente é positivo pois a corrente elétrica gerada aumenta com o aumento da temperatura. Para o módulo CS6C-150P esse coeficiente é de 0.065 % / °C.

2.2.3 EFEITO DA RADIAÇÃO SOLAR NA PRODUÇÃO DE CORRENTE PELO MÓDULO FOTOVOLTAICO

A corrente elétrica produzida pelo módulo está diretamente ligada a quantidade de radiação solar que o módulo recebe, ou seja, quando maior sua área, maior será a corrente elétrica produzida. Para módulos cristalinos comerciais esta corrente é em torno de 8 A, enquanto a tecnologia de filme fino fornece uma corrente elétrica inferior, em torno de 2 A (VILLALVA, 2015). Essa informação pode ser extraída do item 4 do *datashee*t do módulo fotovoltaico CS6C-150P.

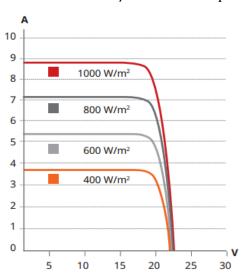


Gráfico 2 – Produção de corrente pela irradiância

Fonte: Datasheet do módulo fotovoltaico CS6C-150P.

O Gráfico 2 apresenta a relação entre a produção de corrente elétrica e o nível de radiação solar que atinge a superfície de um módulo fotovoltaico. Essa relação é diretamente proporcional, ou seja, quanto maior for a quantidade de radiação solar incidente em um módulo, maior será a quantidade de corrente produzida pelo mesmo. Entretanto, a tensão de saída do módulo fotovoltaico permanece praticamente constante, não sofrendo grandes alterações conforme a quantidade de irradiação recebida.

2.2.4 EFEITO DA TEMPERATURA NO MÓDULO FOTOVOLTAICO

A temperatura ambiente tem influência sobre a produção de energia do módulo fotovoltaico. Em temperaturas ambiente mais altas, as tensões produzidas pelo módulo

fotovoltaico serão menores e maiores para as temperaturas ambiente mais baixas. A corrente produzida pelo módulo também sofre alteração conforme a temperatura de operação do módulo fotovoltaico, tendo um aumento para temperaturas mais elevadas e uma redução para temperaturas mais baixas (KALOGIROU, 2016).

O Gráfico 3 apresenta que a tensão de saída do módulo fotovoltaico sofre variações conforme a temperatura da célula fotovoltaica aumenta ou diminui. Porém, a corrente sofre pouca variação. Essa informação pode ser extraída do item 4 do *datashee*t do módulo fotovoltaico CS6C-150P.

A
10
9
8
7
6
6
5
4
3
2
1
0
5°C
■
25°C
■
45°C
■
65°C
■

Gráfico 3 – Curva I x V em função da variação da temperatura na célula fotovoltaica

Fonte: Datasheet do módulo fotovoltaico CS6C-150P.

Para se determinar a potência de um módulo fotovoltaico em determinada temperatura ambiente, utiliza-se a Equação 3, considerando os coeficientes de temperatura obtidos no item 6, do *datasheet* do módulo fotovoltaico CS6C-150P. Esses coeficientes variam conforme a tecnologia da célula fotovoltaica (monocristalino, policristalino, filme fino, e outras) (CRESEB, 2014).

$$P_{MP\ corrigido} = P_{MPstc}.\{100\% + \left[\left((T_{amb} + 25^{\circ}C) - 25^{\circ}C \right).\gamma_{Pmp} \right] \}$$
 (3)

Onde:

 P_{MP} – É a potência pico máxima do módulo fotovoltaico em STC;

 T_{amb} – É a temperatura ambiente do local de instalação do módulo fotovoltaico;

 γP_{mp} – É o coeficiente de temperatura para a correção da potência máxima (PMP) em função da influência da temperatura sobre as células fotovoltaicas. Esse coeficiente é negativo, pois a potência elétrica gerada diminui com o aumento da temperatura.

2.2.5 CURVA CARACTERÍSTICA DE CORRENTE, TENSÃO E POTÊNCIA

Durante os ensaios para se determinar as características elétricas de um módulo fotovoltaico, o fabricante realiza o traçado da curva corrente *versus* tensão (I x V). O gráfico com as medidas de tensão e corrente pode ser plotado quando uma carga é conectada ao módulo fotovoltaico e cada ponto da curva I x V, representa uma potência gerada para uma determinada condição.

O ponto de máxima potência produzida pelo módulo fotovoltaico, corresponde ao produto de tensão de máxima potência (V_{MP}) pela corrente de máxima potência (I_{MP}). O Gráfico 4 apresenta a curva I x V característica para um módulo fotovoltaico.

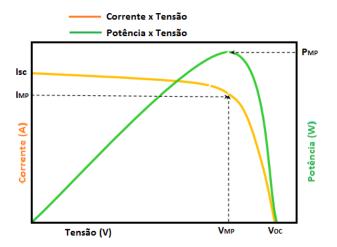


Gráfico 4 – Curva característica I x V e P x V.

Fonte: Adaptado de CRESESB, 2014.

O Gráfico 4 mostra que para cada ponto da curva I-V (corrente x tensão), existe uma potência que é gerada para aquela condição de operação, ou seja, o módulo fotovoltaico não se comporta como uma fonte de energia convencional, não apresentando tensão e corrente de saída constantes. Os valores de tensão e corrente de saída do módulo fotovoltaico irá depender da carga que está conectada aos seus terminais. Se a carga demandar uma corrente elevada, a tensão de saída irá cair, e a corrente tenderá à corrente de curto circuito. Caso a carga demande de uma tensão elevada, a tensão de saída do módulo fotovoltaico tenderá à tensão de circuito aberto. Além da curva I-V, o Gráfico 4 também apresenta a curva P-V (Potência x

Tensão), que mostra a potência em função da tensão e que identifica o ponto com o máximo valor de potência oferecido pelo módulo fotovoltaico. Este ponto corresponde à situação na qual o módulo fotovoltaico fornece a sua potência máxima, e deve operar nesse ponto, pois é nessa situação que a produção de energia será maior.

2.2.6 EFEITO DO SOMBREAMENTO NO MÓDULO FOTOVOLTAICO

O efeito do sombreamento é causado por algum obstáculo que impeça a radiação solar de atingir a superfície de um módulo fotovoltaico, afetando a quantidade de corrente produzida, pois esta é diretamente proporcional a intensidade luminosa recebida pelo módulo.

Como o módulo fotovoltaico é produzido por células conectadas em série e caso alguma sofra com sombreamento, a corrente das outras células acaba ficando limitada e desta forma o funcionamento de todo o módulo é prejudicado. Além da perda na potência produzida, pode haver danos ao módulo fotovoltaico, pois a potência que está sendo gerada, não estará sendo entregue ao consumo e acabará sendo dissipada, na forma de calor, no módulo afetado pelo sombreamento. Essa dissipação, que recebe o nome de "ponto quente", pode causar a ruptura do vidro e fusão de polímeros e metais (CRESEB, 2014).

Para diminuir o efeito causado pelo sombreamento e com isso diminuir possíveis "pontos quentes", os fabricantes adicionam diodos de *by-pass* (de desvio ou de passagem) que são ligados em paralelos a um grupo de células. O diodo de *by-pass* irá proporcionar um desvio para a corrente, assim limitar a potência dissipa pela célula ou conjunto de células sombreadas.

O Gráfico 5 representa a curva I x V para módulos fotovoltaicos conectados em série. A linha contínua representa os módulos sem o efeito do sombreamento. A linha pontilhada mostra a curva com o efeito do sombreamento e a linha contínua com pontos mostra os módulos com o efeito do sombreamento, porém com a utilização de diodos de *by-pass*.

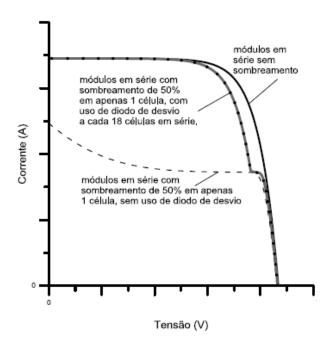
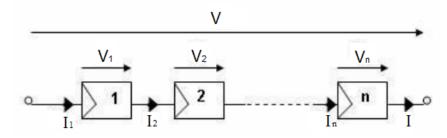


Gráfico 5 - Curva I x V para módulos conectadas em série

Fonte: Adaptado de CRESESB, 2014.

O Gráfico 5 apresenta a diferença entre os comportamentos de conjunto de módulos fotovoltaicos com o diodo de *by-pass* e sem diodo. A curva maior mostra I x V do conjunto sem a presença de sombreamento. A curva intermediária mostra o comportamento do conjunto na presença de sombreamento e com a utilização de diodos de *by-pass*. Neste caso observa-se que até uma certa faixa de tensão o diodo de *by-pass* da célula/módulo fotovoltaico defeituoso está em operação e a corrente fornecida pelo módulo é máxima. A curva menor e tracejada mostra o comportamento do conjunto com sombreamento e sem a presença do diodo de *by-pass*, ficando a corrente do conjunto fica limitada pelo módulo ou célula fotovoltaica problemática.


2.2.7 ASSOCIAÇÕES DE MÓDULOS FOTOVOLTAICOS

Os módulos fotovoltaicos podem ser associados em série e/ou em paralelo, para que assim possa se obter níveis de tensão e/ou corrente mais elevados.

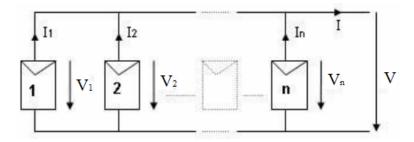
2.2.7.1 Associação em série

Em uma associação em série os módulos fotovoltaicos apresentam a mesma corrente elétrica e a característica resultante deste agrupamento é a obtenção de uma tensão equivalente a soma das tensões de cada módulo que compõe a série.

Figura 8 – Associação de módulos fotovoltaicos em série.

Fonte: o autor.

Logo:


$$V = V_1 + V_2 + \dots + V_n \tag{4}$$

$$I = I_1 = I_2 = \dots = I_n \tag{5}$$

2.2.7.2 Associação em paralelo

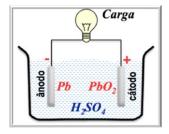
Em uma associação em paralelo, os módulos fotovoltaicos fornecem um mesmo nível tensão, porém as correntes elétricas produzidas por cada módulo irão ser somadas e criando uma corrente única na saída da associação resultante.

Figura 9 – Associação de módulos fotovoltaicos em paralelo

Fonte: o autor.

Logo:

$$V = V_1 = V_2 = \dots = V_n \tag{6}$$


$$I = I_1 + I_2 + \dots + I_{3n} \tag{7}$$

Os sistemas fotovoltaicos para a geração de energia elétrica são construídos associando-se primeiramente os módulos fotovoltaicos em série até se obter um nível de tensão desejável, e depois associando-se em paralelo até alcançar o nível de corrente desejado (KALOGIROU, 2016).

2.3 BATERIA PARA SISTEMA FOTOVOLTAICO OFF-GRID

Em sistema fotovoltaico *off-grid* é necessário o uso de uma ou mais baterias para o armazenamento de energia. Uma bateria é formada por um recipiente que contém duas placas com polaridades diferentes no caso, um ânodo feito com material que contribua com elétrons e um cátodo que deverá aceitar os elétrons, isoladas por separados e imersas em eletrólito de ácido sulfúrico que preenche o espaço entre elas. Uma bateria pode ser formada por uma única célula ou por um conjunto de células, conectados em série e/ou paralelo, que armazenam a energia elétrica na forma de energia química.

Figura 10 – Esquema simplificado de uma bateria

Fonte: CARNEIRO, 2009

Quando uma carga é conectada a bateria, os elétrons migram do eletrodo negativo para a carga e da carga para o eletrodo positivo. Quando um módulo fotovoltaico é conectado a bateria e, com uma tensão superior, os elétrons circulam do polo positivo para o negativo, aumentando a diferença de potencial da bateria e com isso carregando-a.

A bateria de chumbo-ácido (Pb-ácido) estacionária com o eletrólito liquido é muito difundida no mercado e, é a mais utilizada em sistemas fotovoltaicos *off-grid*, devido ao seu custo ser reduzido (LOPEZ, 2012) e possibilita a aplicação de ciclos de descargas profundos. A bateria estacionária teve seu desenvolvimento concebido para atender aplicações fotovoltaicas e outros sistemas que necessitam de algum tipo de armazenamento de energia para

atender ao consumo de aparelhos elétricos e eletrônicos e, foi projetada para poder possibilitar ciclos profundos em até 80 % da sua capacidade repetida vezes (LOPEZ, 2012).

2.3.1 TERMOS RELACIONADOS À BATERIA

Como características das baterias, pode-se citar:

- Célula elemento eletroquímico capaz de fornecer energia elétrica através de uma reação química interna;
- Bateria pode ser formada por uma única célula ou por uma combinação de células, conectadas em série e/ou paralelo, para obter tensão e/ou corrente;
- Capacidade (C) quantidade de eletricidade que pode ser armazenada/fornecida por uma bateria e sua unidade é expressa em ampère hora (Ah);
- Taxa C é a taxa em que uma bateria é carregada ou descarregada em relação a sua capacidade. É normalmente expressa em 1C, 2C, 0,5C, 0,05C e etc., onde C é a capacidade da bateria;
- Tensão nominal total tensão que aparece na bateria em regime de descarga normal e o seu valor para bateria chumbo ácido é de 12 V;
- Tensão de flutuação tensão com valor acima da tensão nominal e tem o objetivo de manter a bateria em carga permanente (flutuação) para compensar a autodescarga da bateria. Seu valor varia entre 2,15 V e 2,25 V por elemento;
- Autodescarga é resultante de correntes internas na bateria e ocasionam perda de carga, mesmo quando a bateria não está em uso;
- Tensão de carga ou equalização tensão superior à tensão de flutuação e tem a finalidade de compensar as diferentes tensões entre as células. Seu valor varia entre 2,50 V a 2,75 V por elemento;
- Tensão final de descarga ou tensão de corte corresponde ao valor de tensão de uma célula no final do processo de descarga. Seu valor varia entre 1,75 V a 1,85 V.

2.3.2 VIDA ÚTIL DA BATERIA

Existem dois fatores que podem comprometer a vida de uma bateria chumbo ácido, que são: a profundida da descarga e a temperatura ambiente de operação.

2.3.2.1 Vida útil da bateria em função profundida da descarga

O tempo de vida útil de uma bateria é avaliado pela quantidade de ciclos de cargas e descargas que a bateria pode efetuar. O número máximo de ciclos que uma bateria pode efetuar, está diretamente ligado a profundidade da descarga realizada, que corresponde a uma porcentagem da carga máxima da bateria no final da descarga. Normalmente o tempo de vida útil de uma bateria varia com o tempo de descarga, a temperatura de funcionamento e a com a profundidade da descarga. Para baterias de chumbo ácido, a vida útil da bateria chega ao seu fim quando sua capacidade de armazenamento é reduzida a 80 % da sua capacidade nominal. Essa perda de 20 % está relacionada ao envelhecimento da bateria e a quantidade de ciclos realizadas (VILLALVA, 2015).

Ciclo de Vida em função da profundidade de descarga

Gráfico 6 – Número de ciclos de carga e descarga em função da profundidade de descarga

Fonte: Adaptado do manual técnico bateria Freedom®.

O Gráfico 6 apresenta a quantia de ciclos de uma bateria em relação a profundidade da descarga. Através do gráfico é possível observar que se a bateria for descarregada moderadamente, até no máximo 10 % da sua capacidade, ela terá uma vida útil maior. Se a bateria for descarregada próxima a 80 % da sua capacidade, o número de ciclos possíveis será reduzido e consequentemente o seu tempo de vida será muito menor.

2.3.2.2 Vida útil da bateria em função da temperatura

A temperatura tem uma forte contribuição no desempenho e na vida útil da bateria. A bateria de chumbo ácido opera melhor a temperaturas moderadas, porém em locais com a temperatura ambiente elevada isso acaba contribuindo para a diminuição da vida útil. A bateria de chumbo ácido, tem o seu desempenho verificado à temperatura ambiente de 25 °C e funciona melhor em torno dessa temperatura.

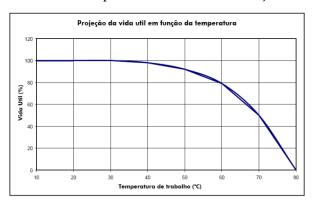


Gráfico 7 – Expectativa de vida em função da temperatura.

Fonte: Manual técnico bateria Freedom®.

O Gráfico 7 mostra que conforme aumenta a temperatura o tempo de vida útil da bateria sofre uma redução. Até a temperatura de 40 °C, a bateria terá sua vida útil 100 %. Porém se a temperatura começar a subir, acima dos 40 °C, a vida útil da bateria começar a cair. Se a bateria operar a uma temperatura de 60 °C, a sua vida útil será de apenas 80% do tempo de vida possível para uma determinada profundidade de descarga.

2.3.3 MÉTODO DE CARGA DE BATERIA DE CHUMBO ÁCIDO

O método de carga adequado da bateria é um importante processo para garantir um aumento de sua vida útil. Vários métodos de cargas podem ser utilizados para carregar a bateria de chumbo ácido e entre eles pode-se destacar o método duplo nível de tensão (LAZZARIN, 2006).

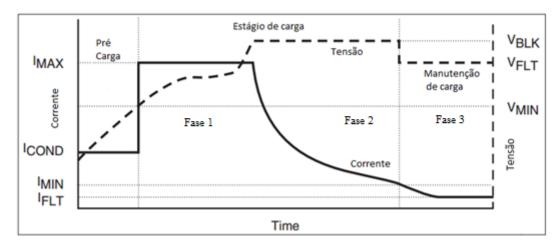


Gráfico 8 – Método Duplo Nível de Tensão

Fonte: Adaptado do datasheet do circuito integrado da Texas Instruments bq2031.

O método duplo nível de tensão é composto de três estágios. O primeiro estágio consiste em se impor uma corrente com valor constante (I_{max}) até que a tensão aplicada a bateria alcance à tensão de equalização (V_{BLK}). No segundo estágio a tensão de equalização (V_{BLK}) é mantida sobre a bateria e com isso a corrente irá decair até um valor chamado de corrente de retenção mínima (I_{MIN}). No final do segundo estágio a bateria obteve 100 % de carga e por fim, no terceiro estágio se mantem uma tensão de flutuação (V_{FLT}) sobre a bateria afim de manter ela carregada (LAZZARIN, 2006).

2.4 CONTROLADOR DE CARGA

A produção de energia elétrica pelo módulo fotovoltaico responde dinamicamente as condições ambientais como radiação solar, temperatura ambiente e outros fatores, como o sombreamento. Sendo assim, acoplar diretamente a bateria ao módulo fotovoltaico e as cargas é prejudicial à vida útil da bateria, porém para o módulo fotovoltaico não há problemas, pois parte dessa energia produzida e não consumida, será dissipada na forma de calor. Por consequência, é necessário um dispositivo que controle as correntes que fluem entre a bateria, módulo fotovoltaico e a carga e, que garanta que os parâmetros elétricos da bateria sejam mantidos dentro das especificações estabelecidas pelo fabricante. Estas tarefas são efetuadas por um controlador de carga, que faz a correta conexão entre o módulo fotovoltaico e a bateria, evitando que a bateria seja sobrecarregada ou descarregada excessivamente. Além da função de controlar a carga/descarga da bateria, existem funções adicionais tais como: bloqueio de

corrente reversa, proteção contra sobrecarga, proteção de desconexão em baixa tensão, entre outras (KALOGIROU, 2016).

2.4.1 TIPOS DE CONTROLADORES DE CARGA

2.4.1.1 Controladores Convencionais

Os controladores de carga do tipo convencional são os mais simples que existem e, sua estratégia de controle consiste em atuar chaves (relés ou transistores) que desconectam o módulo fotovoltaico da bateria, quando sua tensão chega a um valor pré-determinado e o reconectam quando a tensão da bateria chega ao nível de tensão de máxima profundidade de descarga (10,5 V). Quando a bateria está sendo carregada pelo módulo fotovoltaico, seu nível de tensão sobe e ao atingir a tensão de corte (TC), o controlador cessa a corrente de carga e desconecta o módulo fotovoltaico. Quando o nível da tensão da bateria decresce, devido ao uso e, ao atingir a tensão de reconexão (TR), a conexão do módulo fotovoltaico com a bateria é restabelecida e assim se tem o início o carregamento da bateria (LOPEZ, 2013). Os controladores de cargas convencionais *on/off* podem ser classificados quanto à forma utilizada para a desconexão do módulo fotovoltaico da bateria quando esta atinge a sua carga plena e podem ser divididos em dois tipos: os do tipo série, ou os do tipo paralelo (*shunt*).

Os controladores tipo série utilizam chaves eletrônicas, que podem ser relés ou transistores, para desconectar o módulo fotovoltaico da bateria, quando se atinge a tensão máxima de carga e voltando a fechar o circuito depois de uma redução estipulada da tensão.

A Figura 11 apresenta a estrutura de um controlador série, onde um circuito de controle monitora a tensão da bateria e atua na abertura ou fechamento de chaves (relés ou transistores). Quando a bateria está em estágio de carregamento a Chave 1 permanece fechada, permitindo a passagem de corrente elétrica do módulo fotovoltaico para a bateria. Quando a bateria está completamente carregada, a Chave 1 é aberta de forma a evitar sobrecarga. A Chave 2 atua na desconexão da carga quando a tensão da bateria chega a um nível de tensão de máxima profundidade de descarga (10,5 V). Após o restabelecimento da tensão da bateria a Chave 2 é fechada e a carga é alimentada.

Componentes de chaveamento (opcional)

Módulo Fotovoltaico

Chave 1

Bateria

Controles

Controles

Figura 11 – Estrutura de um controlador de carga com chave série

Fonte: Adaptado de CRESEB, 2014.

O controlador paralelo (*shunt*) utiliza um dispositivo do tipo relé ou transistor, de forma a desligar ou reduzir a potência do módulo fotovoltaico, a partir do momento em que a bateria está completamente carregada. Assim, como módulo fotovoltaico continua a gerar energia elétrica, a corrente é regulada e curto-circuitada através de dispositivo (*shunt*) paralelo a bateria e apenas uma pequena quantidade desta corrente contínua carregando a bateria. A outra parcela da energia que não é aproveitada, acaba sendo dissipada em forma de calor no módulo fotovoltaico, já que este pode suportar a corrente de curto circuito sem qualquer problema. Para este tipo de controlador é necessário a utilização de um diodo de bloqueio em série entre o elemento de chaveamento e a bateria, com o objetivo de protegê-la do curto circuito durante o desvio da corrente do módulo fotovoltaico. Este método é o ideal para a bateria, já que a sua carga é feita de forma eficiente e com total segurança (LOPEZ, 2012).

Módulo Fotovoltaico Carga Chave 2 Controles Componentes de chaveamento

Figura 12 – Estrutura de um controlador de carga com chave paralela

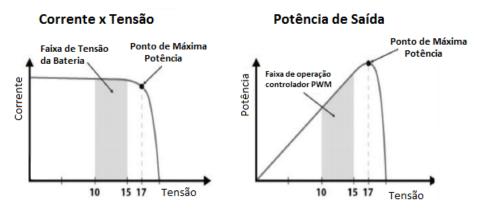
Fonte: Adaptado de CRESEB, 2014.

A Figura 12 apresenta a estrutura de um controlador paralelo, onde um circuito de controle monitora a tensão da bateria e atua na abertura e fechamento de chaves (relés ou transistores). Quando a bateria está em estágio de carregamento a Chave 1 permanece aberta, permitindo a passagem de corrente elétrica do módulo fotovoltaico para a bateria. Quando a

bateria está completamente carregada, a Chave 1 é fechada de forma a evitar sobrecarga. A Chave 2 atua na desconexão da carga quando a tensão da bateria chega a um nível de tensão de máxima profundidade de descarga (10,5 V). Após o restabelecimento da tensão da bateria a Chave 2 é fechada e a carga alimentada.

Durante o período em que a Chave 1 fica fechada, o módulo fotovoltaico fica em curto circuito, porém esse processo não é prejudicial ao módulo fotovoltaico, já que a corrente máxima que o módulo fotovoltaico pode atingir é a corrente de curto-circuito (VILLALVA, 2015).

2.4.1.2 Controlador eletrônico com a tecnologia PWM


Esse tipo de controlador possui em seu circuito eletrônico um microprocessador que é responsável por realizar o carregamento da bateria utilizando um algoritmo que respeita o perfil de carga de três estágios apresentado na seção 2.3.3. Quando a bateria atinge sua capacidade de carga, o controlador de carga PWM diminui lentamente a quantidade de energia aplicada a bateria, deixando-a no estado de tensão de flutuação. Este tipo de controlador permite que a bateria seja completamente carrega com menos estresse que os controladores convencionais, prolongando a sua vida útil. O controlador PWM também implementa à bateria as mesmas proteções que o controlador convencional, protegendo-a contra descarga ou sobrecarga através do fechamento ou abertura das chaves eletrônicas conforme a tensão da bateria.

Para um sistema com uma tensão nominal de 12 V, a tensão da bateria estará normalmente entre 10,5 V a 14,4 V, porém o módulo fotovoltaico para a aplicação em 12 V, é um módulo que possui 36 células em série, e normalmente possui uma V_{MP} (Tensão de máxima potência, em STC) em torno de 18 V. Quando este módulo fotovoltaico é conectado a bateria, através do controlador de carga, a tensão da bateria acaba sendo imposta ao módulo fotovoltaico, ou seja, a tensão de saída do módulo fotovoltaico será igual a tensão da bateria. Sendo assim, o módulo fotovoltaico não estará operando em sua tensão de máxima potência, que seria em 18V, mas sim com uma tensão entre 10,5 V e 14,5 V, que seria a tensão mínima e máxima que uma bateria chumbo ácido, com tensão nominal em 12 V pode operar.

No Gráfico 9 é apresentado a curva da corrente pela tensão (I x V) e a curva da potência pela tensão (P x V). Na curva I x V, a corrente permanece constante durante o carreamento da bateria, porém a tensão de saída do módulo aumenta conforme a bateria é carregada, como a tensão máxima da bateria será de 14,5 V, o módulo fotovoltaico nunca irá

operar em sua tensão de máxima potência. A medida que a bateria é carregada a tensão de saída do módulo aumentará e com isso a sua potência também irá aumentar, porém como a tensão de saída é limitada pela tensão da bateria, o módulo fotovoltaico não irá operar em sua máxima potência.

Gráfico 9 – Curva de Corrente x Tensão e Curva Potência x Tensão do módulo fotovoltaico

Fonte: Adaptado de *Traditional PWM vs Morningstar's TrakStar™ MPPT Technology*.

O Gráfico 9 informa que o controlador PWM não opera na V_{MP} do módulo fotovoltaico e isso leva a uma perda da energia, que poderia ser utilizada para melhorar o carregamento da bateria ou ser utilizada nas cargas do sistema. Quanto maior a diferença entre a tensão da bateria e a V_{MP} do módulo fotovoltaico, mais energia é desperdiçada por um controlador PWM durante o carregamento da bateria.

Figura 13 – Controlador de carga PWM modelo VS4548BN do fabricante EPsolar

Fonte: Datasheet do controlador PWM VS4548BN.

2.4.1.3 Controlador eletrônico com a tecnologia MPPT

Um módulo fotovoltaico possui um único ponto de operação, para determinada condição de temperatura e radiação solar, onde os valores da corrente (I) e tensão (V) resultam em uma potência máxima, que é o ponto ideal de funcionamento, chamado de ponto de máxima potência (MPP – *Maximum Power Point*), e muda de acordo com a temperatura e o nível de radiação solar, conforme apresentado nos Gráficos 2 e 3.

A tensão produzida pelo módulo fotovoltaico sofre alteração conforme a temperatura ambiente muda, porém essa mudança ocorre de maneira mais lenta, não sendo instantânea, não causando prejuízo na produção de energia de maneira imediata. Como a corrente produzida pelo módulo fotovoltaico é diretamente proporcional a quantidade de radiação que atinge a sua superfície e como o nível da radiação pode variar rapidamente, por causa da passagem de nuvens ou sombreamentos, isso acaba acarretando distorções nas curvas do módulo fotovoltaico como as apresentadas no Gráfico 5. Sendo assim é interessante que o controlador de carga tenha algum tipo de controle eletrônico que consiga acompanhar essas variações, realizando os controles necessários para manter o módulo fotovoltaico operando em sua máxima potência e maximizando a produção de energia elétrica. Esse recurso é chamado de rastreamento do ponto de máxima potência.

O controlador de carga com a tecnologia MPPT (*Maximum Power Point Tracking* – rastreamento do ponto de máxima potência), que além de possuir componentes eletrônicos para o chaveamento em PWM, que possibilita melhorar o processo de carga da bateria, possui o recurso de MPPT e através dele, é possível extrair a máxima potência de um módulo fotovoltaico, para qualquer condição de irradiação ou temperatura, pois o controlador irá fazer com que o módulo fotovoltaico opere em seu ponto de máxima potência.

O Gráfico 10 apresenta as curvas 1 (I x V) e 2 (P x V) representam a produção de energia de um módulo fotovoltaico sem a presença de sombreamento, enquanto a curva 3 (I x V) e 4 (P x V) mostram o módulo fotovoltaico submetido a um sombreamento. Sendo assim, é oportuno que através de um meio de controle se análise essas alterações na curva I x V e atue sobre do controlador MPPT, afim de se garantir que o mesmo mantenha o módulo fotovoltaico operando em sua máxima potência e evitando perdas.

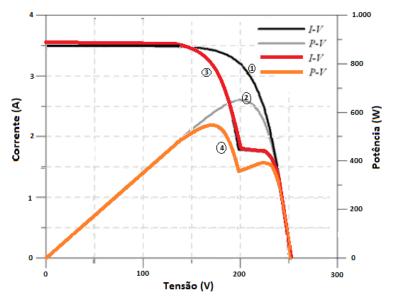


Gráfico 10 – Curvas características do módulo fotovoltaico com e sem sombreamento

Fonte: Adaptado de CRESEB, 2014.

O controlador de carga MPPT apresenta uma conexão indireta entre o módulo fotovoltaico e a bateria através de um circuito conversor CC-CC, que pode transformar a tensão mais alta do módulo fotovoltaico para uma tensão mais baixa, no caso a da bateria, porém com a corrente de saída maior que a corrente de entrada, de modo que a potência se mantenha constante.

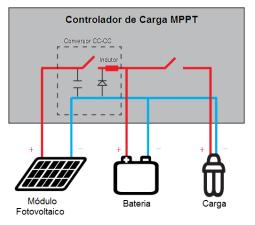


Figura 14 – Estrutura de um controlador de carga MPPT

Fonte: Adaptado de *Traditional PWM vs Morningstar's TrakStar™ MPPT Technology*.

O Gráfico 11 apresenta um comparativo de desempenho entre controladores PWM e MPPT. O controlador PWM irá operar na faixa de tensão de 10 V a 15 V, para um sistema com nominal em 12 V, sendo o que o módulo fotovoltaico utilizado pode fornecer uma tensão

maior do que essa faixa de operação. Com o uso de um controlador com MPPT, e se a condições climáticas forem favoráveis, é possível fazer com o módulo ofereça a sua maior tensão de operação e isso resulta em um ganho na potência extraído do módulo.

Controlador PWM Faixa de Operação

Tensão

Gráfico 11 – Operação do módulo fotovoltaico com e sem recurso do MPPT

Fonte: Adaptado de *Traditional PWM vs Morningstar's TrakStar™ MPPT Technology*.

Com o uso do controlador com MPPT o módulo fotovoltaico irá operar na tensão necessária para que sua máxima potência seja extraída independentemente do valor da tensão nos terminais da bateria. Segundo (VILLALVA, 2015) o controlador de carga com a tecnologia MPPT oferece um ganho de 30% na produção de energia quando comparado com um controlador de carga com a tecnologia PWM.

A função de um dispositivo com MPPT é extrair a máxima potência do módulo fotovoltaico, através do ajuste constante ou periódico de seu valor de tensão e da corrente, independente da sua condição de operação, afim de que este sempre esteja em um ponto de máxima potência ($P_{MP} = V_{MP} \times I_{MP}$). Porém os valores de V_{MP} e I_{MP} não são conhecidos e é necessário encontrá-los e para isso existem algoritmos de MPPT utilizados em sistemas fotovoltaicos e entre eles quatro podem ser destacados, que são os mais utilizados (WENDLING JÚNIOR, 2015). São eles:

• Perturbar e Observar – P&O: consiste em gerar uma perturbação na tensão de saída do módulo fotovoltaico em uma dada direção, e observar se houve um aumento na potência. Se houver um aumento na potência se mantem a perturbação no mesmo sentido, se não houve, se altera o sentido da perturbação. Esse processo contínua até que máxima potência do módulo fotovoltaico seja encontrada.

- Condutância Incremental: este método é uma melhoria do P&O e baseia-se em encontrar o ponto de máxima potência através do sinal da derivada da potência em relação à tensão e permite calcular qual o sentido da perturbação, evitando que o rastreador siga no sentido errado.
- Tensão de circuito aberto: se baseia que a tensão de potência máxima é à tensão de circuito aberto relacionada a uma constante de proporcionalidade, que para o módulo de filme é de 0,7 e para o módulo de silício cristalino é de 0,8. Durante a operação o módulo fotovoltaico é desconectado e sua tensão de circuito aberto mensurada e um novo valor de V_{MP} é calculado.
- Corrente de curto-circuito: este método considera que a I_{MP} é a I_{SC} relacionada por uma constante de proporcionalidade, que é de 0,8 para o módulo de filme e de 0,9 para o módulo de silício cristalino.

Figura 15 – Controlador de carga com MPPT modelo IT4415ND do fabricante EPsolar

Fonte: Datasheet IT4415ND.

2.5 DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO *OFF-GRID*

O sistema fotovoltaico *off-grid* deve ser dimensionamento para receber a energia radiada pelo Sol e captada pelo módulo fotovoltaico e assim atender a necessidade de uma demanda de carga. Nesse caso o sistema deve produzir energia suficiente para atender a um consumo de energia elétrica, e o correto dimensionamento do sistema traz inúmeros benefícios ao usuário, entre eles pode-se destacar: a economia em componentes a serem utilizados, a produção de energia será de acordo com a necessidade do usuário, não havendo sobras e nem faltas, etc.

O projeto de um sistema fotovoltaico envolve algumas etapas que devem ser seguidas afim de se adequar o sistema às necessidades definidas pelas cargas que serão alimentadas.

As etapas fundamentais do dimensionamento de um sistema fotovoltaico são:

- Obtenção dos dados do recurso solar e temperatura para o local de instalação do sistema;
- Levantamento do consumo de energia elétrica, ou seja, demanda a ser atendida;
- 3. Levantamento da quantidade de dias de autonomia do sistema;
- 4. Dimensionamento do painel fotovoltaico;
- 5. Definição da tecnologia do controlador de carga.

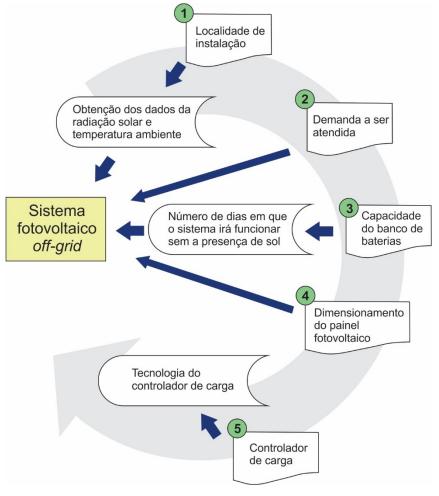
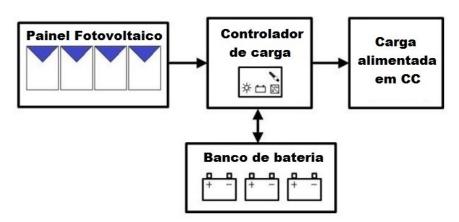



Figura 16 – Etapas do dimensionamento do sistema fotovoltaico off-grid

Fonte: o autor.

Figura 17 – Sistema fotovoltaico off-grid

Fonte: o autor.

A Figura 17 apresenta o esquema de um sistema fotovoltaico *off-grid*, com armazenamento para alimentação de cargas em corrente contínua (CC).

2.6 OBTENÇÃO DOS DADOS DE RADIAÇÃO SOLAR E TEMPERATURA MÉDIA DO LOCAL DA INSTALAÇÃO

A obtenção dos dados de radiação solar e da temperatura ambiente são de grande importância para o correto dimensionamento do sistema fotovoltaico *off-grid*, pois um sistema fotovoltaico tem suas características elétricas dependentes da radiação solar que atinge a superfície do módulo fotovoltaico e da temperatura do ambiente a qual o sistema está submetido.

2.6.1 DADOS DE RADIAÇÃO SOLAR

Os dados de radiação solar, podem ser obtidos através de algumas bases de dados disponíveis gratuitamente na Internet, e entre eles a nível Brasil, tem-se o SunData do Centro de Referência para as Energias Solar e Eólica Sergio de S. Brito – CRESESB, acessado em 13/10/2017. Esta base de dados disponibiliza os dados de irradiação solar para qualquer ponto do território nacional.

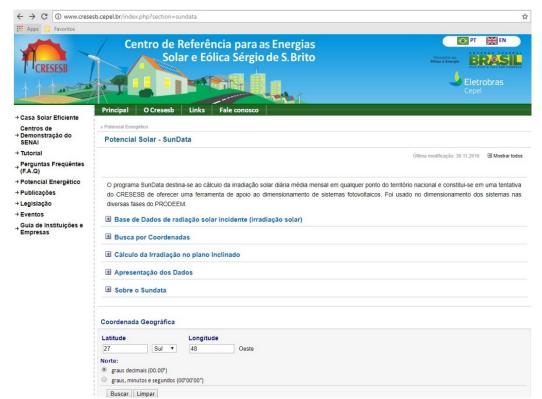


Figura 18 – SunData do CRESESB

Fonte: SunData do CRESESB.

Para encontrar os níveis de radiação solar, basta entrar com os dados de Latitude de Longitude do local desejado na opção "Coordenada Geográfica". O Gráfico 12 apresenta os dados de radiação solar para a cidade de Florianópolis/SC, considerando para tal a Latitude de 27° Sul e a Longitude de 48° Oeste na referida base de dados. Como resultado dessa busca, a base de dados fornece os dados de radiação solar para no mínimo três localidades próximas ao ponto de interesse e os valores de radiação solar são fornecidos em kWh/m².dia.

Gráfico 12 – Dados de radiações solares para Florianópolis/SC e entorno

	ongitude: 48° O		Т	Т	Trradiação so	olar diária média	[kWh/m² dia]														
	Estação	Município	UF	País	Latitude [°]	Longitude [°]	Distância [km]	Jan	Fev	Mar	Abr	Mai J	un	Jul	Ago :	Set	Out	Nov	Dez	Média	Delt
İ	Camboriu	Camborið	SC	BRA	27° S	48,654444° O						3,22						5,19	5,00	3,92	2,
t	Florianopolis	FlorianÃ ³ polis	SC	BRA	27,5967° S	48,549166° O	85,	5,55	5,19	4,65	3,84	3,15	2,74	2,93	3,49	3,87	4,50	5,27	5,73	4,24	2,
t	Sao Francisco do Sul	São Francisco do Sul	SC	BRA	26,2° S	48,63533° O	109.	2 5,14	4.92	4.50	3.81	3.08	2,69	3.00	3,17	3.56	4.58	5,19	5,61	4,10	2,
	(gib.)			rad	iação Sola	r no Plano F	lorizontal pa 27° 5; 48° 0	ra Lo	ocal	idad	es p	ıróxi	mas			/	<i></i>			<u>.</u>	
				rad	iação Sola	r no Plano F		ra Lo	ocali	idad	es p	róxi	mas							•	
			=	radi	iação Sola	r no Plano F		ra Lo	ocali	idad	es p	oróxi	mas							•	
	Irradiação (kWh/m2 dia) s o			rradi	iação Sola	r no Plano H		ra Lo	ocali	idad	es p	oróxi	mas				<i>*</i>			•	

Fonte: SunData do CRESESB.

Durante o processo de pesquisa das informações referentes a cidade de interesse, caso esta não esteja disponível, a base de dados retorno como resultado as localidades mais próximas, ou outra com as características geográficas mais semelhantes à localidade de interesse.

Gráfico 13 – Dados de radiação solar para cidade de Florianópolis/SC

Fonte: SunData do CRESESB.

Para cada localidade selecionada são fornecidos os valores de radiação do plano horizontal e para os planos inclinados. Para os planos inclinados são apresentados três diferentes ângulos de inclinação em relação ao plano horizontal:

- Ângulo igual à latitude: o valor da latitude local é usado como ângulo de inclinação do módulo fotovoltaico. Em geral, este é o ângulo de escolha para a instalação do módulo fotovoltaico (KALOGIROU, 2016);
- Maior média anual: é o ângulo que fornece o maior valor médio diário anual de radiação solar. Costuma ser usado quando se deseja a maior geração anual de energia, e seria o caso de sistemas fotovoltaicos conectados à rede de distribuição de energia;
- Maior mínimo mensal: é o ângulo que fornece o maior valor médio de diário anual de radiação solar. É utilizado quando se deseja ter uma medida conservadora, e onde o fornecimento contínuo de energia elétrica é crítico para a atividade fim por isso procura-se minimizar o risco de falta de energia.

2.6.2 DADOS DE TEMPERATURA

Os dados de temperatura, podem ser obtidos através de algumas bases de dados disponíveis gratuitamente na Internet, e entre eles a nível Brasil, tem-se o Instituto Nacional de Meteorologia – INMET, acessado em 14/10/2017. Esta base de dados disponibiliza os dados de temperatura para alguns pontos do território nacional.

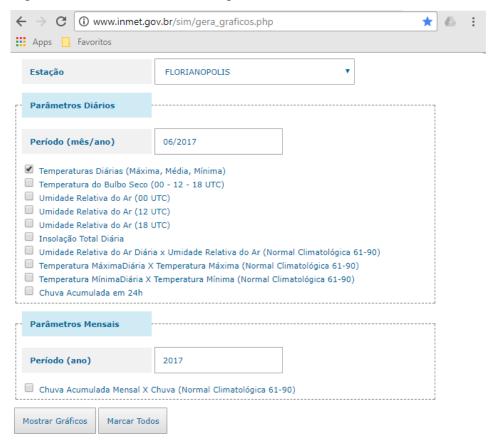
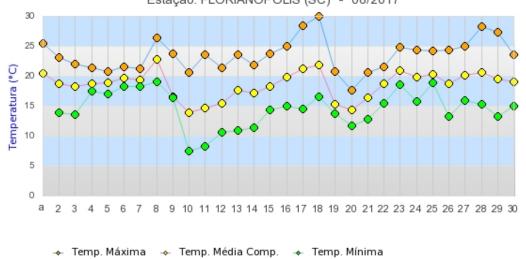


Figura 19 – Base de dados de temperatura utilizado


Fonte: INMET.

Para encontrar os valores de temperatura, basta selecionar a estação mais próxima ao local desejado, escolher o período (mês/ano), marcar a opção "Temperaturas Diárias (Máxima, Média, Mínima)" e clicar em "Mostrar Gráficos".

Gráfico 14 – Gráfico com as temperaturas diárias máximas, médias e mínimas para o mês de junho de 2017

Temperaturas Diárias (Máxima, Média, Mínima) Estação: FLORIANOPOLIS (SC) - 06/2017

Fonte: INMET.

Conforme foi apresentado na seção 2.2.4 a temperatura exerce influência sobre as características de elétricas dos módulos fotovoltaicos. Em temperaturas mais altas a tensão produzida por um módulo fotovoltaico será menor e, maior para temperaturas mais baixas. A corrente produzida pelo módulo fotovoltaico também sofre alterações conforme a temperatura ambiente do local de instalação, tendo um aumento para temperaturas mais elevadas e uma redução para temperaturas mais baixas. Sabe-se que a temperatura de operação de um módulo fotovoltaico, em uso prático, dificilmente será igual a temperatura nas condições de teste em STC (25 °C) e, em função disso é necessário que o dimensionamento de um sistema fotovoltaico leva em consideração o fator de correção da temperatura (KALOGIROU, 2016).

• CORREÇÃO DA TENSÃO EM MÁXIMA POTÊNCIA

A tensão de saída de um módulo fotovoltaico é um valor variável e que é afetado diretamente pela temperatura do ambiente aonde este é instalado. Em temperaturas mais altas a tensão produzida por um módulo fotovoltaico será menor e, maior para temperaturas mais baixas. Através da Equação 8, é possível calcular a máxima tensão de saída de um módulo considerando um fator de correção, decorrente da variação da temperatura.

$$V_{MP\ corrigido} = V_{MPstc}.(100\% + (T_{amb}.\beta_{Voc}))$$
(8)

Onde:

 V_{MP} – É a tensão em máxima potência, em STC;

 T_{amb} – É a temperatura ambiente do local de instalação do módulo fotovoltaico;

 βV_{oc} – É o coeficiente de temperatura para a correção da tensão.

• CORREÇÃO DA CORRENTE EM MÁXIMA POTÊNCIA

A corrente produzida pelo módulo fotovoltaico sofre alterações conforme a temperatura ambiente do local de instalação, tendo um aumento para temperaturas mais elevadas e uma redução para temperaturas mais baixas. Durante o dimensionamento de um sistema fotovoltaico, deve-se realizar a correção da corrente pela temperatura ambiente, pois isto determinará a corrente elétrica produzida por um módulo. A Equação 9 auxilia no cálculo a corrente em máxima potência corrigida.

$$I_{MP\ corrigido} = I_{MPstc}. (100\% + (T_{amb}.\alpha_{Isc}))$$
Onde: (9)

 I_{MP} – É a corrente em máxima potência, em STC;

 T_{amb} – É a temperatura ambiente para o local de instalação do módulo fotovoltaico; α_{Isc} – É o coeficiente de temperatura para a correção da corrente.

2.7 DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO *OFF-GRID* PELO MÊS COM O PIOR NÍVEL DE RADIAÇÃO SOLAR

Afim de se garantir a produção de energia de forma plena durante o ano, o sistema fotovoltaico *off-grid* deve ser dimensionado considerando o período do ano aonde ocorre os valores mais baixos de radiação solar. Assim, o sistema irá produzir energia suficiente para atender a demanda de carga nesse período, e nos períodos em que ocorrem os valores mais favoráveis o sistema irá produzir mais energia. Esse método garante que o sistema fotovoltaico *off-grid* irá fornecer energia suficiente durante todo o ano para atender a demanda de consumo da carga (CRESESB, 2014).

Em relação a temperatura ambiente, para a correção da tensão e da corrente elétrica, deve-se fazer o uso da temperatura ambiente média para o mês com o pior nível de radiação (KALOGIROU, 2016). Conforme explanado na seção 2.2.4, a temperatura exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior nos meses com maior nível de radiação maior, sua influência será atenuada, pois com níveis de

radiação maiores mais energia será produzida pelo módulo fotovoltaico. Desta forma a temperatura não afetará significativamente a produção de energia pelo módulo fotovoltaico, quando em condições de radiação solar mais alta.

Como exemplo, para a cidade de Florianópolis/SC, o mês com o pior nível de radiação é o mês de junho, que apresenta do valor de 3,73 kWh/m²/dia e a temperatura média é de 19,07 °C.

2.8 ESTIMATIVA DO CONSUMO DE ENERGIA

A estimativa do consumo de energia pode ser realizada através da soma do consumo nominal de cada equipamento, expresso em amperes, e multiplicado pelo do tempo de utilização diário de cada um. Para determinar o consumo médio de cada carga que será alimento pelo sistema, pode-se fazer o uso da Equação 10.

$$L_{CC} = P_e . N_d \tag{10}$$

Onde:

Lcc (Wh/dia) – Consumo de energia em corrente contínua por dia;

Pe (W) – Potência nominal do equipamento;

Nd – Número de horas diárias de funcionamento do equipamento.

2.9 DIMENSIONAMENTO DO BANCO DE BATERIAS

Através da quantidade de energia consumida pelas cargas, deve-se dimensionar o banco de bateria para que este, possa acumular a quantidade de energia que será utilizada em dias de pouca irradiação (nublados e chuvosos) e nos períodos noturnos. O correto dimensionamento do banco de baterias garante que haja energia suficiente para alimentar as cargas e a Equação 11 auxilia no cálculo da quantidade de energia a ser armazenada.

$$CBI_{C20}(Ah) = \frac{\frac{L.N}{Pd}}{V_{sistema}} \tag{11}$$

Onde:

 CBI_{C20} – É a capacidade do banco de baterias em Ah para o regime de descarga em 20 horas (C_{20});

L – Quantidade de energia consumida diariamente;

N – Número de dias em autonomia;

 P_d – Profundidade máxima da descarga;

 $V_{sistema}$ – É a tensão em corrente contínua do sistema.

Os valores considerados típicos para a profundidade de descarga utilizados em baterias são entre 20 % a 80 %. Como mencionado na seção 2.3.2.1 a vida útil da bateria é reduzida conforme a profundidade da descarga, ou seja, quanto maior for essa profundidade menor será a vida útil da bateria.

Após determinar a quantidade de energia que o banco de baterias deverá armazenar, será necessário determinar o número de baterias que serão interligadas em paralelo e para isso utiliza-se a Equação 12.

$$N^{\circ}$$
 de baterias em paralelo = $\frac{CBI}{CBI_{bateria}}$ (12)

Onde:

 $CBI_{bateria}$ – É capacidade da bateria, em Ah, para o regime de descarga em 20 horas (C20).

A determinação da quantidade de baterias ligadas em série, dependerá da tensão nominal do sistema, que poderá ser de 12 V, 24 V, 48 V e etc. A Equação 13 é utilizada para determinar o número de baterias conectadas em série.

$$N^{\circ}$$
 de baterias em série = $\frac{V_{sistema}}{V_{bateria}}$ (13)

Onde:

V_{bateria} – É a tensão nominal, em Volts, da bateria.

2.10 DIMENSIONAMENTO DO PAINEL FOTOVOLTAICO

Pode-se considerar como painel fotovoltaico o conjunto de um ou mais módulos fotovoltaicos conectados entre si para que se possa dessa maneira aumentar a quantidade de energia produzida pelo sistema. A quantidade de módulos fotovoltaicos que irá formar o painel depende diretamente da potência do conjunto de cargas a ser alimentada.

Para calcular a energia necessária diariamente, faz-se o uso da Equação 14.

$$L = \left(\frac{L_{cc}}{\eta_{bat}}\right) \tag{14}$$

Onde:

Lcc (Wh/dia) – Quantidade de energia consumida em corrente contínua (CC) por dia;

ηbat (%) – Eficiência global da bateria. Caso essa informação não esteja disponível, utilizar a eficiência em 86% (CRESESB, 2014).

Com base na quantidade de energia necessária diariamente para atender a demanda da carga, é preciso determinar qual será a potência do painel fotovoltaico para que este possa produzir a energia necessária para atender o sistema. A Equação 15 auxilia no dimensionamento da potência do painel fotovoltaico.

$$P_m = \left(\frac{L}{HSPxRed_1xRed_2}\right) \tag{15}$$

Onde:

 P_m (Wp) – Potência do painel fotovoltaico;

L (Wh/dia) – Quantidade de energia consumida diariamente;

HSP (h/dia) – Horas de sol pleno conforme a inclinação do painel fotovoltaico;

Red1 (%) – Fator de redução (derating) da potência do módulo fotovoltaico. Para módulos fotovoltaicos de c-Si utiliza-se o valor de 0,9;

Red2 (%) – Fator de derating da potência devido a perdas no sistema. Como valor padrão utiliza 0,9.

2.11 DIMENSIONAMENTO DO CONTROLADOR DE CARGA

2.11.1 Dimensionamento do controlador de carga PWM

Para determinar a quantidade de módulos fotovoltaicos em série, deve-se utilizar a Equação 16.

$$N^{\circ}$$
 de módulos fotovoltaicos em série = $\frac{1,2 \times Vsistema}{V_{MP \ corrigido}}$ (16)

Onde:

1,2 – Fator que se considera que a bateria tem que ser carregada com uma tensão 20 % que a sua tensão nominal;

 $V_{sistema}$ – É a tensão em corrente continua especificada pelo controlador de carga; $V_{MPcorrigido}$ – É a tensão em máxima potência para a temperatura máxima da localidade de instalação do sistema fotovoltaico.

A partir da potência calculada na Equação 16 e através da Equação 17, determinase a corrente que deverá ser fornecida pelo painel fotovoltaico.

$$I_m = \frac{P_m}{V_{sistema}} \tag{17}$$

Onde:

Im (A) – Corrente do painel fotovoltaico;

Pm (Wp) – Potência do painel fotovoltaico;

Vsistema – É a tensão em corrente contínua especificada pelo controlador de carga.

O resultado obtido na Equação 17 é o valor da corrente de máxima potência que o painel fotovoltaico deverá fornecer. A partir desse resultado pode-se determinar o número de módulos que serão conectados em série através da Equação 18.

$$N^{\circ}$$
 de módulos em paralelo = $\frac{I_m}{I_{mp}}$ (18)

Onde:

Imp(A) - É a corrente de máxima potência do módulo fotovoltaico corrigida para a temperatura da localidade da instalação.

2.11.2 Dimensionamento do controlador de carga MPPT

Com sensível redução nos preços dos módulos fotovoltaicos de 60 ou mais células, pode ser que sistemas fotovoltaicos *off-grid* com esse tipo de módulo se torna economicamente viável e com isso o uso de um controlador de carga MPPT se faz necessário (VILLALVA, 2015).

O controlador de carga MPPT possui uma faixa de tensão de entrada, que é considerada a faixa ótima de operação. Essa faixa de tensão de operação muda conforme o modelo de controlador e deve ser respeitada. Neste caso, deve-se garantir que a tensão de saída do painel, ou seja, que a soma das tensões produzida por cada módulo conectado em série, esteja dentro da faixa de tensão de operação do controlador de carga.

Para calcular a quantidade de módulos em série, conta-se com o auxílio da Equação 19.

$$\frac{V_{MPPTmin}}{V_{MPTmax}} < N^{\circ} de \ m\'odulos \ em \ s\'erie < \frac{V_{MPPTmax}}{V_{MPTmin}} \tag{19}$$

Onde:

 V_{MPPTmin} – É a tensão mínima de operação do MPPT do controlador de carga;

 $V_{MPPTma}x$ – É a tensão máxima de operação do MPPT do controlador de carga. Deve estar disponível no manual do controlador de carga;

 V_{MPTmax} — Tensão de operação máxima do módulo fotovoltaico corrigida para a localidade da instalação do sistema;

 V_{MPTmin} — Tensão de operação mínima do módulo fotovoltaico corrigida para a localidade da instalação do sistema.

Para calcular o número de módulos fotovoltaicos em paralelo, considera-se a potência total do painel fotovoltaico, calculada na Equação 15, e a potência de cada módulo fotovoltaico conectado em série.

$$N^{\circ}$$
 de módulos em paralelo = $\frac{P_m}{N^{\circ}$ de módulos em série x P_{MAX} (20)

Onde:

 P_{MAX} – É potência (Wp) nominal do módulo adotado.

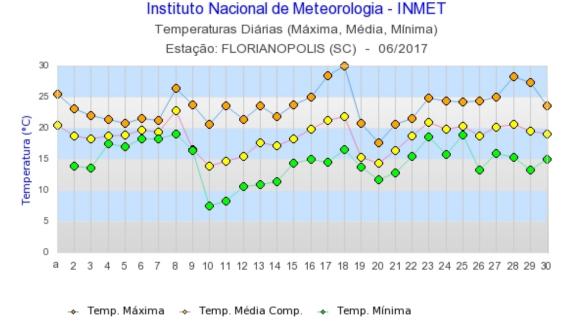
3 ANÁLISE DAS VARIÁVEIS RADIAÇÃO SOLAR TEMPERATURA AMBIENTE NO DIMENSIONAMENTO DE SISTEMA FOTOVOLTAICO *OFF-GRID*

Para o dimensionamento de um sistema fotovoltaico *off-grid* é necessário o entendimento das variáveis que podem influenciar no desempenho e na potência de geração de energética do sistema. Dentre as variáveis, pode-se citar: o nível da radiação solar, temperatura ambiente mínima e máxima, a quantidade de células (36, 60 e 72) que compõem o módulo fotovoltaico, tecnologia do controlador de carga, PWM ou MPPT, potência das cargas, e a tensão de operação do sistema, que neste trabalho, será de 12 V, 24 V e 48 V. Para o estudo realizado neste trabalho, os dimensionamentos dos sistemas serão realizados para a cidade de Florianópolis/SC e utilizarão a metodologia de cálculo apresentada a partir da seção 2.7.

3.1 DADOS DE RADIAÇÃO E TEMPERATURA PARA FLORIANÓPOLIS

Os dados de radiação solar e de temperatura para a cidade de Florianópolis, foram obtidos a partir das bases de dados descritas nas seções 2.6.1 e 2.6.2. Os dados de radiação solar escolhidos para realizar a comparação foram os do mês de junho e de dezembro, que correspondem respectivamente, o menor e o maior nível para esta localidade.

Estação: Florianopolis Município: FlorianA*polis , SC - BRA Latitude: 27,5967° S Longitude: 48,549166° O incia do ponto de ref. (27° S; 48° O):85,8 km Inclinação 0° N Ângulo igual a latitude 27° N Maior média anual 23° N 5.11 5.04 4.86 4.42 3.98 3,62 3.80 4.17 4.17 4.46 4.92 4.48 1,57 Maior mínimo mensa 43° N 4.51 4.31 Irradiação Solar no Plano Inclinado -Florianopolis-Florianã3polis, SC-BRA 27,5967° S; 48,549166° O

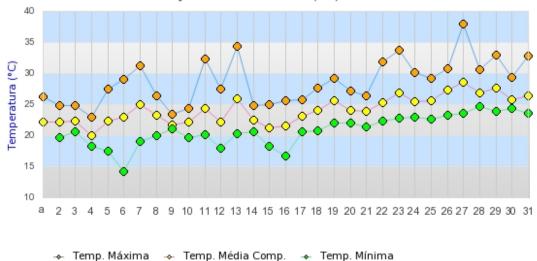

Gráfico 15 – Níveis de radiação solar para a cidade de Florianópolis/SC

Fonte: SunData do CRESESB.

O nível de radiação para o mês de junho, que é o pior nível do ano, é de 3,73 kWh/m²/dia e para o mês de dezembro, que é o maior nível do ano, é de 5,05 kWh/m².dia. Esses dados foram extraídos da linha de "Ângulo igual a latitude", e que são utilizados quando o ângulo da inclinação de instalação do módulo fotovoltaico é igual ao da latitude do local da instalação.

Em relação a temperatura ambiente, os dados foram pesquisados na base de dados (seção 2.6.2), tal qual os níveis de radiação, considerando os meses de junho e de dezembro.

Gráfico 16 – Temperatura ambiente no mês de junho para a cidade de Florianópolis/SC


Fonte: INMET.

Para o mês de junho, as temperaturas ambientes que foram selecionadas são: a de 7 °C, que ocorreu no dia 10 e a de 30 °C, que ocorreu no dia 18, sendo respectivamente a menor e a maior temperatura do referido mês. A temperatura ambiente média para esse mês foi de 19,07 °C, estabelecida através de uma média simples entre as menores e as maiores temperaturas.

Gráfico 17 – Temperatura ambiente no mês de dezembro para a cidade de Florianópolis/SC

Instituto Nacional de Meteorologia - INMET

Temperaturas Diárias (Máxima, Média, Mínima) Estação: FLORIANOPOLIS (SC) - 12/2016

Fonte: INMET.

Para o mês de dezembro, as temperaturas ambientes que foram selecionadas são: a de 14 °C, que ocorreu no dia 06 e a de 38 °C, que ocorreu no dia 27, sendo respectivamente a menor e a maior temperatura do referido mês. A temperatura ambiente média para esse mês foi de 24,71 °C, estabelecida através de uma média simples entre as menores e as maiores temperaturas.

3.2 PLANILHA PARA O DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO

Para facilitar o dimensionamento do sistema fotovoltaico, foi elaborada uma planilha, que engloba os cálculos apresentados a partir da seção 2.6.2 deste trabalho. A planilha implementada para realizar o dimensionamento do sistema fotovoltaico *off-grid*, foi dividida em quatro blocos afim de facilitar o seu entendimento. A planilha foi elaborada para realizar somente o dimensionamento de sistemas alimentados exclusivamente em corrente contínua (CC). Caso haja necessidade de se dimensionar um sistema alimentado em corrente alternada (CA), outra referência deverá ser consultada.

Figura 20 – Planilha de dimensionamento do sistema fotovoltaico off-grid

			Planilha			
- Frank Street		Dados do módulo fotovoltaico	voltaico		Dimensionamento considerando	
Localidade		corrigido			controlador de carga PWM	
Temperatura média do local de instalação do sistema fotovoltaico (°C)	30,0	Potência máxima (PMP) Wp	228	Número de módulos em série	ulos em série	e
Horas de Sol Pico (HSP)	3,73	Tensão em máxima potência (VMP) V	V 27,57	Número de módulos em paralelo	ulos em paralelo	2
Cargas		Corrente em máxima potência (IMP) A	A 8,69		Dimensionamento elétrico do controlador	_
Tensão do sistema (Vcc)	48	Tensão circuito aberto (VOC) V	34,01	Corrente minima	Corrente minima suportada pelos controladores	58
Carga diária (W)	1000	Corrente de curcto circuito (ISC) A	9,26	Tensão de operação (V)	ção (V)	48
Horas de funcionamento por dia	9	Dados do painel fotovoltaico para o local da instalação	oltaico ação	Corrente suporta	Corrente suporta pelo controlador	45
Baterias		Potência do painel fotovoltaico para alimentar as cargas (Wp)	2048	Quantidade de o	Quantidade de controladores em paralelo	2
Eficiência da bateria	76'0	Corrente do painel fotovoltaico (A)	35,56		Dimensionamento considerando	
Autonomia em dias	2	Dimensionamento Banco de Baterias	de Baterias		controlador de carga MPPT	
Tensão nominal da bateria (V)	12	Profundidade da descarga (%)	20%	Número de módulos em série	ulos em série	6
Capacidade da bateria (C20) em Ah	105	Capacidade do Banco [C20]	516	Número de módi	Número de módulos em paralelo	3
Modelo de módulo fotovoltaico	CS6P-260P	Número de baterias em paralelo	2		Dimensionamento elétrico do controlador	_
Potência máxima (PMP) Wp	260	Número de baterias em série	4	Corrente minima	Corrente minima suportada pelo controlador	35
Tensão circuito aberto (V□C) V	37,5			Tensão de operação (V)	ção (V)	48
Corrente de curcto circuito (ISC) A	9,12			Corrente suporta	Corrente suporta pelo controlador	45
Tensão em máxima potência (VMP) V	30,4			Quantidade de c	Quantidade de controladores em paralelo	1
Corrente em máxima potência (IMP) A	8,56					
Coeficiente de Temperatura PMAX (%)	-0,41%	List	Lista de Equipamentos - Controlador PWM	- Controlador PW	M	
Coeficiente de Temperatura VOC	-0,31%	Módulo Fotovoltaico:	CS6P-260P	Quantidade:	15	
Coeficiente de Temperatura ISC	0,053%	Controlador de carga:	VS4548BN	Quantidade:	2	
		Bateria: Fre	Freedom DF2000	Quantidade:	20	
			Produção de Energia (Wh/dia):	ergia (Wh/dia):	7779	
		Lista	Lista de Equipamentos - Controlador MPPT	- Controlador MPI	PT	
		Módulo Fotovoltaico:	CS6P-260P	Quantidade:	6	
		Controlador de carga: ITRA	ITRACER IT4415ND	Quantidade:	1	
		Bateria: Fre	Freedom DF2000	Quantidade:	20	
			Produção de Energia (Wh/dia):	ergia (Wh/dia):	7654	

Fonte: o autor.

3.2.1 INSERSÃO DOS DADOS LOCAIS, CARACTERÍSTICAS ELÉTRICAS DA CARGA, BATERIA E MÓDULOS

Figura 21 – Inserção dos dados locais, características elétricas da carga, bateria e módulos

Localidade	
Temperatura média do local de instalação do sistema fotovoltaico (°C)	30,0
Horas de Sol Pico (HSP)	3,73
Cargas	
Tensão do sistema (Vcc)	48
Carga diária (W)	1000
Horas de funcionamento por dia	6
Baterias	
Eficiência da bateria	0,97
Autonomia em dias	2
Tensão nominal da bateria (V)	12
Capacidade da bateria (C20) em Ah	105
Modelo de módulo fotovoltaico	CS6P-260P
Potência máxima (PMP) Wp	260
Tensão circuito aberto (VOC) V	37,5
Corrente de curcto circuito (ISC) A	9,12
Tensão em máxima potência (VMP) V	30,4
Corrente em máxima potência (IMP) A	8,56
Coeficiente de Temperatura PMAX (%)	-0,41%
Coeficiente de Temperatura VOC	-0,31%
Coeficiente de Temperatura ISC	0,053%

Fonte: o autor.

Nete bloco da planilha são inseridos os seguintes parâmetros:

- Localidade são inseridos os dados de temperatura e de radiação solar, que neste caso é utilizado em HSP (horas de sol pico), da localidade de instalação do sistema fotovoltaico *off-grid*. Esses dados podem ser obtidos conforme o descrito nas seções 2.6.1 e 2.6.2;
- Cargas são inseridos os dados de tensão em que as cargas operam (tensão do sistema), que podem ser em 12 V, 36 V e 48 V, ou outra tensão em nível CC (corrente alternada). Também é inserido a potência das cargas a serem alimentadas e a quantidades de horas em que irão funcionar por dia. O cálculo utilizado aqui é apresentado na seção 2.7;
- Bateria são inseridos dados sobre a bateria a ser utilizada no sistema e a
 quantidade desejada de dias de autonomia para o funcionamento do sistema.
 Os dados técnicos sobre a bateria podem ser encontrados no *datasheet*disponibilizado pelo fabricante. O dimensionamento segue a metodologia
 de cálculo apresentada na seção 2.8;

 Modelo de módulo fotovoltaico – são inseridos os dados elétricos e os coeficientes térmicos do módulo fotovoltaico a ser utilizado no sistema. Essas informações podem ser encontradas no datasheet fornecido pelo fabricante do módulo fotovoltaico.

3.2.2 CORREÇÃO DAS CARACTERÍSTICAS ELÉTRICAS DO MÓDULO FOTOVOLTAICO, DIMENSIONAMENTO DO PAINEL FOTOVOLTAICO E DO BANCO DE BATERIAS

Figura 22 – Correção das características elétricas do módulo fotovoltaico, dimensionamento do painel fotovoltaico e dimensionamento do banco de baterias

Dados do módulo fotovoltaio corrigido	CO
Potência máxima (PMP) Wp	228
Tensão em máxima potência (VMP) V	27,57
Corrente em máxima potência (IMP) A	8,69
Tensão circuito aberto (VOC) V	34,01
Corrente de curcto circuito (ISC) A	9,26
Dados do painel fotovoltaio	0
para o local da instalação	
Potência do painel fotovoltaico para alimentar as cargas (Wp)	2048
Corrente do painel fotovoltaico (A)	35,56
Dimensionamento Banco de Ba	terias
Profundidade da descarga (%)	50%
Capacidade do Banco [C20]	516
Número de baterias em paralelo	5
Número de baterias em série	4

Fonte: o autor.

Este bloco da planilha calcula e apresenta os resultados para os seguintes parâmetros:

- Dados do módulo fotovoltaico corrigido como foi visto na seção 2.2.4, o módulo fotovoltaico sofre influência da temperatura do ambiente em que é instalado e com isso, sua corrente e tensão podem apresentar alterações em relação aos seus valores nominais. Esses valores precisam ser corrigidos para temperatura da localidade da instalação. As equações para realizar essas correções foram apresentadas na seção 2.6.2;
- Dados do painel fotovoltaico aqui são apresentados os dados do painel fotovoltaico (potência e corrente) para a alimentar a potência da carga e também carregar o banco de baterias. Esses cálculos são apresentados na seção 2.9;

• Dimensionamento do banco de baterias – deve ser inserida a profundidade da descarga da bateria (%) e a partir dessa informação será apresentado a capacidade do banco de bateria (C₂₀) e a quantidade de baterias conectadas em série e em paralelo. Quanto maior for a profundidade da descarga, menor será a quantidade de baterias utilizado no banco. O dimensionamento utilizado foi o apresentado na seção 2.8.

3.2.3 DIMENSIONAMENTO DO CONTROLADOR DE CARGA

Figura 23 – Dimensionamento do controlador de carga

	erando
controlador de carga P	WM
Número de módulos em série	3
Número de módulos em paralelo	5
Dimensionamento elétrico do o	ontrolador
Corrente minima suportada pelos controladores	58
Tensão de operação (V)	48
Corrente suporta pelo controlador	45
Quantidade de controladores em paralelo Dimensionamento conside	2 Prando
controlador de carga M	PPT
controlador de carga M Número de módulos em série	PPT 3
	201000
Número de módulos em série	3 3
Número de módulos em série Número de módulos em paralelo	3 3
Número de módulos em série Número de módulos em paralelo Dimensionamento elétrico do o	3 3 ontrolador
Número de módulos em série Número de módulos em paralelo Dimensionamento elétrico do c Corrente minima suportada pelo controlador	3 3 ontrolador 35
Número de módulos em série Número de módulos em paralelo Dimensionamento elétrico do c Corrente minima suportada pelo controlador Tensão de operação (V)	3 3 ontrolador 35 48

Fonte: o autor.

Este bloco da planilha calcula e apresenta os resultados para os seguintes parâmetros:

- Dimensionamento do painel fotovoltaico considerando controlador de carga PWM – é apresentada a quantidade de módulos fotovoltaicos necessários para fornecer energia para alimentar as cargas e carregar o banco de baterias quando no sistema será utilizado controlador de carga com a tecnologia PWM. Foram empregadas as fórmulas apresentadas na seção 2.11;
- Dimensionamento elétrico do controlador PWM a partir do modelo disponível, é possível determinar as quantidades de controladores PWM, em

- paralelo, que serão utilizados no sistema fotovoltaico. Foram empregadas as fórmulas apresentadas na seção 2.11;
- Dimensionamento do painel fotovoltaico considerando controlador de carga MPPT – é apresentada a quantidade de módulos fotovoltaicos necessários para fornecer energia para alimentar as cargas e carregar o banco de baterias quando no sistema será utilizado controlador de carga com a tecnologia MPPT. Foram empregadas as fórmulas apresentadas na seção 2.12;
- Dimensionamento elétrico do controlador MPPT a partir do modelo disponível, é possível determinar a quantidade de controlador MPPT, em paralelo, a serão utilizados no sistema fotovoltaico. Foram empregadas as fórmulas apresentadas na seção 2.12.

3.2.4 LISTA DE EQUIPAMENTOS E PRODUÇÃO ENERGÉTICA

Figura 24 – Lista de equipamentos e produção energética

	Lista de Equipament	os - Controlador PV	VM
Módulo Fotovoltaico:	CS6P-260P	Quantidade:	15
Controlador de carga:	VS4548BN	Quantidade:	2
Bateria:	Freedom DF2000	Quantidade:	20
	Produção de I	Energia (Wh/dia):	7779

	Lista de Equipamento	s - Controlador M	PPT	
Módulo Fotovoltaico:	CS6P-260P	Quantidade:	9	
Controlador de carga:	ITRACER IT4415ND	Quantidade:	1	
Bateria:	Freedom DF2000	Quantidade:	20	
	Produção de E	nergia (Wh/dia):	7654	

Fonte: o autor.

Este bloco da planilha apresenta os seguintes parâmetros:

- Lista de equipamentos Controlador PWM são apresentados os equipamentos a serem utilizados no sistema, assim como as suas quantidades e a produção quando se utiliza controlador de carga com a tecnologia PWM.
- Lista de equipamentos Controlador MPPT são apresentados os equipamentos a serem utilizados no sistema, assim como as suas

quantidades e a produção quando se utiliza controlador de carga com a tecnologia MPPT.

3.3 EQUIPAMENTOS UTILIZADOS NAS SIMULAÇÕES DOS SISTEMAS FOTOVOLTAICOS

Para realizar as simulações foram considerados os dados técnicos dos seguintes equipamentos:

Módulos Fotovoltaicos:

o CS6C-150P de 36 células do fabricante Candian Solar.

Características elétricas em STC:

- Potência nominal máxima (P_{MÁX}): 150 Wp
- Tensão nominal em máxima potência (V_{MP}): 18,1 V
- Corrente nominal em máxima potência (I_{MP}): 8,30 A
- Tensão de circuito aberto (V_{OC}): 22,3 V
- Corrente de curto circuito (I_{SC}): 8,87 A
- Eficiência: 15,17 %

Características de temperatura:

- Coeficiente de temperatura P_{MÁX}: -0,43 % / °C
- Coeficiente de temperatura V_{OC}: -0,34 % / °C
- Coeficiente de temperatura I_{SC}: 0,065 % / °C
- CS6P-260P de 60 células do fabricante Candian Solar.

Características elétricas em STC:

- Potência nominal máxima (P_{MÁX}): 260 Wp
- Tensão nominal em máxima potência (V_{MP}): 30,4 V
- Corrente nominal em máxima potência (IMP): 8,56 A
- Tensão de circuito aberto (Voc): 37,5 V
- Corrente de curto circuito (I_{SC}): 9,12 A
- Eficiência: 16,16%

Características de temperatura:

- Coeficiente de temperatura P_{MÁX}: -0,41 % / °C
- Coeficiente de temperatura V_{OC}: -0,31 % / °C
- Coeficiente de temperatura I_{SC}: 0,053 % / °C

o CS6U-320P de 72 células do fabricante Candian Solar.

Características elétricas em STC:

- Potência nominal máxima (P_{MÁX}): 320 Wp
- Tensão nominal em máxima potência (V_{MP}): 36,8 V
- Corrente nominal em máxima potência (I_{MP}): 8,69 A
- Tensão de circuito aberto (V_{OC}): 45,3 V
- Corrente de curto circuito (I_{SC}): 9,26 A
- Eficiência: 16,68%

Características de temperatura:

- Coeficiente de temperatura P_{MÁX}: -0,41 % / °C
- Coeficiente de temperatura Voc: -0,31 % / °C
- Coeficiente de temperatura I_{SC}: 0,053 % / °C

• Controladores de cargas:

- Controlador de carga PWM modelo VS4548BN do fabricante EPSOLAR. Esse equipamento pode operar com sistemas que possuem tensões de 12 V, 24 V e 48 V e uma capacidade de corrente de 45 A e;
- Controlador de carga MPPT modelo iTracer IT4415ND do fabricante EPSOLAR. Esse equipamento pode operar com sistemas que possuem tensões de 12 V, 24 V e 48 V e uma capacidade de corrente de 45 A.

• Bateria:

A bateria utilizada nas simulações foi a Freedom DF2000 do fabricante Heliar, tensão nominal de 12 V e com uma capacidade 105 Ah em C₂₀. Nas simulações, a autonomia é para 2 dias e com uma profundidade de descarga em 50%, ou seja, no final do segundo dia o banco de baterias ainda terá 50% da sua capacidade.

• Potências de cargas:

 As simulações foram realizadas com as seguintes potências de cargas resistivas: 100 W, 500 W, 1.000 W e 2.000 W.

3.4 DETERMINAÇÃO DA INFLUÊNCIA DA TEMPERATURA NO DIMENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO *OFF-GRID*

Para determinar a influência que a temperatura ambiente exerce do dimensionamento do sistema fotovoltaico *off-grid*, foram realizadas as seguintes simulações:

- Para o mês de junho, aonde o nível de radiação solar é de 3,73 kWh/m²/dia.
 Para esse mês as temperaturas utilizadas foram a de 7 °C, que é a menor, e a 30 °C que é a maior e,
- Para o mês de dezembro, aonde o nível de radiação solar é de 5,05 kWh/m²/dia. Para esse mês as temperaturas utilizadas foram a de 14 °C, que é a menor, e a 38 °C que é a maior.

As simulações foram realizadas para sistemas com módulos de 36, 60 e 72 células; controladores com tecnologia PWM e MPPT; tensão do sistema em 12 V, 24 V e 48 V e para as cargas de 100 W, 500 W, 1000 W e 2000 W. Os resultados são apresentados nas seções subsequentes.

3.4.1 Sistemas com módulo fotovoltaico de 36 células e radiação em 3,73 kWh/m²/dia. Temperatura ambiente de 7 °C e 30 °C.

A Tabela 1 apresenta os resultados das simulações para verificar o efeito da variação da temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulos de 36 células. Nessas simulações foi considerada a radiação solar em 3,73 kWh/m²/dia e a temperatura ambiente de 7 °C e 30 °C.

Tabela 1 – Sistemas com módulo de 36 células e 3,73 kWh/m²/dia

5 10 1 1 5 MM	1											
Potência da Carga (W)							00					
Tensão do sistema (V)			2				4				8	AL E
Temperatura Ambiente (°C)	_	00		,00		00		,00	_	00		,00
Tecnologia do Controlador	PWM			MPPT			PWM		PWM	100000	PWM	7
Quantidade Módulos	2	2	2	2	2	2	2	2	4	4	4	4
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	4	4	4	4
Produção de Energia (Wh/dia)	746	1082	757	970	746	1082	757	970	1491	2163	1515	1940
%Produção de energia (MPPT x PWM)	45,0	06%		05%	45,0	06%		05%	45,	06%		05%
% Produção de energia (PWM x PWM)		1,5	6%			1,5	6%			1,5	6%	
% Produção de energia (MPPT x MPPT)		-10,	34%			-10,	34%			-10,	34%	
Potência da Carga (W)						50	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	00	30	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	9	8	9	8	10	8	10	8	12	8	12	8
Quantidade Controlador	3	2	3	3	2	1	2	2	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3356	4327	3408	3879	3729	4327	3787	3879	4474	4327	4544	3879
%Produção de energia (MPPT x PWM)	28,	94%	13,	83%	16,0	05%	2,4	4%	-3,	29%	-14,	63%
% Produção de energia (PWM x PWM)		1,5	6%			1,5	6%			1,5	6%	
% Produção de energia (MPPT x MPPT)		-10,	34%			-10,	34%			-10,	34%	
Potência da Carga (W)						1000						
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	00	30	<mark>,0</mark> 0
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	18	15	17	16	18	16	18	16	20	16	20	16
Quantidade Controlador	5	4	5	5	3	2	3	3	2	1	2	2
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6711	8113	6437	7758	6711	8654	6816	7758	7457	8654	7573	7758
%Produção de energia (MPPT x PWM)	20,	88%		52%	28,9	94%	13,	83%	16,	05%		4%
% Produção de energia (PWM x PWM)		-4,0	08%			1,5	6%			1,5	6%	
% Produção de energia (MPPT x MPPT)		-4,3	37%			-10,	34%			-10,	34%	
Potência da Carga (W)						20	00					
Tensão do sistema (V)		1	2	3		2	4			4	18	
Temperatura Ambiente (°C)		00		,00		00		,00		00	100	,00
Tecnologia do Controlador	PWM	MPPT	PWM	МРРТ	PWM	MPPT	PWM	MPPT	PWM	МРРТ	PWM	МРРТ
Quantidade Módulos	35	29	34	32	36	30	34	32	36	32	36	32
Quantidade Controlador	9	8	9	9	5	4	5	5	3	2	3	3
Quantidade Baterias	40	40	40	40	40	40	40	40	40	40	40	40
Produção de Energia (Wh/dia)	13050	15685	12875	15517	13423	16226	12875	15517	13423	17307	13632	15517
%Produção de energia (MPPT x PWM)	20,	19%	20,	52%	20,	88%	20,	52%	28,	94%	13,	83%
% Produção de energia (PWM x PWM)		-1,3	34%			-4,0	08%			1,5	6%	
% Produção de energia (MPPT x MPPT)		-1,0)7%			-4,3	7%			-10,	34%	

Considerando os resultados obtidos no cálculo é possível constatar que:

• Para sistemas que operam com controlador PWM, quando ocorreu o aumento da temperatura ambiente de 7 °C para 30 °C e o número de módulos fotovoltaicos mantevese o mesmo, houve um aumento na produção de energia de 1,56 % para algumas

potências de cargas e para alguns níveis de tensão do sistema (células na cor verde), ou seja, o aumento da temperatura resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM Esse aumento na produção energética para temperaturas ambiente mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);

- Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da temperatura ambiente de 7 °C para 30 °C e o número de módulos fotovoltaicos mantevese o mesmo, houve uma queda na produção de energia de 10,34 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando a comparação entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando na temperatura ambiente de 7 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 45,06 % (células na cor azul-claro) em relação a sistemas com controladores PWM.
 Entretanto, quando a temperatura ambiente é de 30 °C, essa diferença acaba caindo e ficando em 28,05 % (células na cor amarelo);
- Para algumas potências de cargas (células na cor azul) e com os sistemas operando com controladores de cargas MPPT, o aumento da temperatura ambiente de 7 °C para 30 °C, resultou em um aumentou na quantidade de módulos fotovoltaicos, afim de se manter a produção energética. Mesmo com o aumento na quantidade de módulos não ocorreu o acréscimo na produção energética. Isso é explicado nos itens 2.2.4 e 2.4.1.3;
- Sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superior aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com

PWM e com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;

- Para algumas potências de cargas (células na cor cinza) e com os sistemas operando com controladores de cargas PWM, o aumento da temperatura ambiente de 14 °C para 38 °C, resultou em uma diminuição na quantidade de módulos fotovoltaicos. Essa queda na quantidade de módulos, deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é o mesmo, sofrendo um aumento na quantidade, para as potências de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.4.2 Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 kWh/m²/dia. Temperatura ambiente de 7 °C e 30 °C.

A Tabela 2 apresenta os resultados das simulações para verificar o efeito da variação da temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulos de 60 células. Nessas simulações foi considerada a radiação solar em 3,73 kWh/m²/dia e a temperatura ambiente de 7 °C e 30 °C.

Tabela 2 – Sistemas com módulos de 60 células e 3,73 kWh/m²/dia

Potência da Carga (W)	T T					10	00					
Tensão do sistema (V)	-	1	2				4	-			18	
Temperatura Ambiente (°C)	7	00		,00	7	00		.00	7	00		,00
Tecnologia do Controlador	-		PWM			MPPT			-			
Quantidade Módulos	2	1	2	1	1	1	1	1	2	2	2	2
	1											
Quantidade Controlador	2	2	2	2	2	2	2	2	4	4	4	4
Quantidade Baterias	_						-		_	-		
Produção de Energia (Wh/dia)	769	940	778	850 2%	769	940	778	850 2%	1538	1880	1556	1701
%Produção de energia (MPPT x PWM)	22,	24%	_	270	ZZ,	24%	.6%	Z70	ZZ,	24%	-7-	270
% Produção de energia (PWM x PWM)			.6%	-				-			.6%	
% Produção de energia (MPPT x MPPT)		-9,5	2%			-9,5	2%			-9,5	52%	
Potência da Carga (W)						50	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	00	30,	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	9	5	9	5	5	5	10	6	6	6	9	6
Quantidade Controlador	3	2	3	2	2	2	2	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3460	4700	3501	4252	3845	4700	3890	5103	4614	5640	4668	5103
%Produção de energia (MPPT x PWM)	35,	82%	21,	47%	22,	24%	31,	19%	22,	24%	9,3	2%
% Produção de energia (PWM x PWM)		1,1	6%			1,1	6%			1,1	6%	
% Produção de energia (MPPT x MPPT)		-9,5	2%			8,5	7%			-9,5	52%	
Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	00	30	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	17	9	17	9	9	9	18	10	10	10	15	9
Quantidade Controlador	5	3	5	3	3	3	3	2	2	2	2	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6536	8460	6612	7654	6921	8460	7001	8504	7690	9400	7779	7654
%Produção de energia (MPPT x PWM)	29,	43%	15,	75%	22,	24%	21,	47%	22,	24%	-1,6	51%
% Produção de energia (PWM x PWM)		1,1	6%			1,1	6%			1,1	6%	
% Produção de energia (MPPT x MPPT)		-9,5	2%			0,5	3%			-18,	57%	
Potência da Carga (W)						20	00					
Tensão do sistema (V)		1	2			2	4			4	18	
	100	2.0	20	,00	7,00 30,00			,00	7,	00	30	,00
Temperatura Ambiente (°C)	7,	00	30	,00	,							A CONTRACTOR
Temperatura Ambiente (°C) Tecnologia do Controlador	_	MPPT						МРРТ	PWM	MPPT	PWM	MPPT
	_							MPPT 18	PWM 18	MPPT 18	PWM 27	MPPT 18
Tecnologia do Controlador	PWM	MPPT	PWM	МРРТ	PWM	MPPT	PWM	41415 5	19.00	5.00	71 (6) (8)	8500 =
Tecnologia do Controlador Quantidade Módulos	PWM 34	MPPT 17	PWM 33	MPPT 18	PWM 17	MPPT 17	PWM 34	18	18	18	27	18
Tecnologia do Controlador Quantidade Módulos Quantidade Controlador	9 40	MPPT 17 5	33 9 40	18 5 40	17 5 40	17 5 40	34 5 40	18 3 40	18 3 40	18 3 40	27 3 40	18 2 40
Tecnologia do Controlador Quantidade Módulos Quantidade Controlador Quantidade Baterias	9 40 13073	17 5 40	9 40 12836	18 5 40	PWM 17 5 40 13073	17 5 40	9WM 34 5 40 13225	18 3 40	18 3 40 13842	18 3 40	27 3 40 14003	18 2 40
Tecnologia do Controlador Quantidade Módulos Quantidade Controlador Quantidade Baterias Produção de Energia (Wh/dia)	9 40 13073	17 5 40 15979 24%	9 40 12836	MPPT 18 5 40 15308	PWM 17 5 40 13073	MPPT 17 5 40 15979 24%	9WM 34 5 40 13225	18 3 40 15308	18 3 40 13842	18 3 40 16919 24%	27 3 40 14003	18 2 40 15308

Considerando os resultados obtidos no cálculo é possível constatar que:

 Para sistemas que operam com controlador PWM, quando ocorreu o aumento da temperatura ambiente de 7 °C para 30 °C e o número de módulos fotovoltaicos mantevese o mesmo, houve um aumento na produção de energia de 1,16 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células na cor verde), ou seja, o aumento da temperatura resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse aumento na produção energética para temperaturas ambientes mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);

- Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da temperatura ambiente de 7 °C para 30 °C e o número de módulos fotovoltaicos mantevese o mesmo, houve uma queda na produção de energia de 9,52 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando a comparação entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando em uma temperatura ambiente de 7 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior em 22 % (células na cor azul-claro) em comparação a sistemas com controladores PWM. Entretanto, quando a temperatura ambiente é de 30 °C, essa diferença acaba caindo e ficando em 9,32 % (células na cor amarela);
- Para algumas potências de cargas (células na cor azul) e com os sistemas operando com controladores de cargas MPPT, o aumento da temperatura ambiente de 7 °C para 30 °C, resultou em um aumentou na quantidade de módulos fotovoltaicos afim de se manter a produção energética. Esse aumento na quantidade de módulos ocorreu, pois com o aumento da temperatura, o nível da tensão produzida diminuiu causando uma queda na potência do módulo fotovoltaico. Entretanto, em alguns casos esse aumento resultou no aumento da produção energética, porém, em outros houve redução na produção de energia. Esse comportamento é explicado nas seções 2.2.4 e 2.4.1.3;

- Sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superior aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM e com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Para algumas potências de cargas (células na cor cinza) e com os sistemas operando com controladores de cargas PWM, o aumento da temperatura ambiente de 14 °C para 38 °C, resultou em uma diminuição na quantidade de módulos fotovoltaicos. Essa queda na quantidade de módulos, deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulos próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é o mesmo, sofrendo um aumento na quantidade, para as potências de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.4.3 Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 kWh/m²/dia. Temperatura ambiente de 7 °C e 30 °C.

A Tabela 3 apresenta os resultados das simulações para verificar o efeito da variação da temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulos de 72 células. Nessas

simulações foi considerada a radiação solar em 3,73 kWh/m²/dia e a temperatura ambiente de $7\,^{\circ}\text{C}$ e $30\,^{\circ}\text{C}$.

Tabela 3 – Sistemas com módulos de 72 células e 3,73 kWh/m²/dia

Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	.00	30	,00
Tecnologia do Controlador	PWM	МРРТ	PWM	МРРТ	PWM	MPPT	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ
Quantidade Módulos	2	1	2	1	1	1	1	1	2	2	2	2
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	4	4	4	4
Produção de Energia (Wh/dia)	781	1156	790	1044	781	1156	790	1044	1561	2313	1579	2089
%Produção de energia (MPPT x PWM)	48,	13%	32,	28%	48,	13%	32,	28%	48,	13%	32,	28%
% Produção de energia (PWM x PWM)		1,1	5%			1,1	5%			1,1	5%	
% Produção de energia (MPPT x MPPT)		-9,6	8%			-9,6	8%			-9,6	58%	
Potência da Carga (W)	ž v					50	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	,00	30	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	9	4	9	4	5	4	5	4	6	4	6	4
Quantidade Controlador	3	2	3	2	2	2	2	2	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3513	4625	3553	4178	3.903	4625	3948	4178	4684	4625	4737	4178
%Produção de energia (MPPT x PWM)	31,	67%	17,	58%	18,	50%	5,8	2%	-1,	25%	-11,	82%
% Produção de energia (PWM x PWM)		1,1	.5%			1,1	.5%			1,1	.5%	
% Produção de energia (MPPT x MPPT)		-9,6	58%			-9,6	8%			-9,6	58%	
Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Temperatura Ambiente (°C)	7,	00		,00		00	30	,00	7,	00		,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	17	7	17	8	9	7	9	8	10	8	10	8
Quantidade Controlador	5	2	5	3	3	2	3	3	2	2	2	2
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6635	8094	6711	8355	7026	8094	7106	8355	7806	9250	7896	8355
%Produção de energia (MPPT x PWM)	21,	99%		49%	15,	21%	-	58%	18,	50%	-	2%
% Produção de energia (PWM x PWM)			.5%				.5%				5%	
% Produção de energia (MPPT x MPPT)		3	%			3	%			-9,6	58%	
Potência da Carga (W)					0	20	00		0:			Š
Tensão do sistema (V)		1	2			2	4			4	8	
Temperatura Ambiente (°C)	7,	00	30	,00	7,	00	30	,00	7,	00	30	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	33	14	33	15	17	14	17	15	18	14	18	16
Quantidade Controlador	9	4	9	4	5	4	5	4	3	2	3	3
Quantidade Baterias	40	40	40	40	40	40	40	40	40	40	40	40
Produção de Energia (Wh/dia)		16188				16188				16188		
%Produção de energia (MPPT x PWM)	25,	68%		25%	21,	99%		71%	15,	21%		58%
		4 4	F0/				E0/			4 4	F0/	
% Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT)			.5%				.5% %				.5% %	

Fonte: o autor.

Considerando os resultados obtidos no cálculo é possível constatar que:

- Para sistemas que operam com controlador PWM, quando ocorreu o aumento da temperatura ambiente de 7 °C para 30 °C e o número de módulos fotovoltaicos mantevese o mesmo, houve um aumento na produção de energia de 1,15 % (células na cor verde) para todas as potências de cargas e independente do nível de tensão do sistema (12 V, 24 V ou 48 V), ou seja, o aumento da temperatura resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse aumento na produção energética para temperaturas ambiente mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);
- Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da temperatura ambiente de 7 °C para 30 °C e o número de módulos fotovoltaicos mantevese o mesmo, houve uma queda na produção de energia de 9,68 % (células em laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando a comparação entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando em uma temperatura ambiente de 7 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 48,13 % (células na cor azul-claro) em relação a sistemas com controladores PWM. Entretanto, quando a temperatura ambiente é de 30 °C, essa diferença acaba caindo e ficando em 32,28 % (células na cor amarela);
- Para algumas potências de cargas (células na cor azul) e com os sistemas operando com
 controladores de cargas MPPT, o aumento da temperatura ambiente de 7 °C para 30 °C,
 resultou em um aumentou na quantidade de módulos fotovoltaicos afim de se manter a
 produção energética. Esse aumento na quantidade de módulos ocorreu, pois com o
 aumento da temperatura, o nível da tensão produzida diminuiu causando uma queda na

potência do módulo fotovoltaico. Entretanto, em alguns casos esse aumento resultou no aumento da produção energética, porém em outros, ouve redução na produção de energia. Esse comportamento é explicado nas seções 2.2.4 e 2.4.1.3;

- Sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superior aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM e com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é o mesmo, sofrendo um aumento na quantidade, para as potencias de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.4.4 Sistemas com módulo fotovoltaico de 36 células e radiação em 5,05 kWh/m²/dia. Temperatura ambiente de 14 °C e 38 °C.

A Tabela 4 apresenta os resultados das simulações para verificar o efeito da variação da temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulos de 36 células. Nessas simulações foi considerada a radiação solar em 5,05 kWh/m²/dia e a temperatura ambiente de 14 °C e 38 °C.

Tabela 4 – Sistemas com módulos de 36 células e 5,05 kWh/m²/dia

	100											
Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38,	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	2	2	2	2	2	2	2	2	4	4	4	4
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	4	4	4	4
Produção de Energia (Wh/dia)	1014	1414	1030	1263	1014	1414	1030	1263	2029	2828	2060	2525
%Produção de energia (MPPT x PWM)	39	9%	23	3%	39	9%	23	3%	39	9%	23	3%
% Produção de energia (PWM x PWM)		1,5	5%			1,5	5%			1,5	5%	
% Produção de energia (MPPT x MPPT)		-10,	71%			-10,	71%			-10,	71%	
Potência da Carga (W)						50	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38,	,00	14	,00	38,	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	7	6	7	7	8	6	8	8	8	8	8	8
Quantidade Controlador	2	2	2	2	1	1	2	2	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3551	4242	3606	4419	4058	4242	4121	5050	4058	5656	4121	5050
%Produção de energia (MPPT x PWM)	19,	47%	23	3%	4,5	4%	23	3%	39	9%	23	3%
% Produção de energia (PWM x PWM)		1,5	5%			1,5	5%					
% Produção de energia (MPPT x MPPT)		4,1	7%			19,0)5%		-		71%	
Potência da Carga (W)					og t	10	00					3
Tensão do sistema (V)		1	2			2	4			4	8	
Temperatura Ambiente (°C)	14	,00	38	,00		,00		,00	100	,00		,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT			PWM	MPPT	PWM	MPPT		
Quantidade Módulos	13	11	13	13	14	12	14	14	16	12	16	16
Quantidade Controlador	4	3	4	4	2	2	2	2	1	1	2	2
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6594	7777	6696	8206	7101	8484	7211	8838	8116	8484	8242	10100
%Produção de energia (MPPT x PWM)	17,	94%		3%	19,	47%		3%	4,5	4%		3%
% Produção de energia (PWM x PWM)		111115-111	5%				5%			1,5	5%	
% Produção de energia (MPPT x MPPT)		5,5	2%			4,1	7%			19,0	05%	Î
Potência da Carga (W)						20	00					
Tensão do sistema (V)		1	2			2	4	- 2		4	18	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	26	22	25	25	26	22	26	26	28	24	28	28
- 7/	26			_	4	3	4	4	2	2	2	2
Quantidade Controlador	7	6	7	7	4	3						1 226-2
Quantidade Controlador Quantidade Baterias		6 40	7 40	40	40	40	40	40	40	40	40	40
	7 40 13188	40 15554	40 12878	40 15781	40	1000				40 16968		
Quantidade Baterias Produção de Energia (Wh/dia) %Produção de energia (MPPT x PWM)	7 40 13188	40	40 12878	40	40 13188	40	13393		14202		14423	
Quantidade Baterias Produção de Energia (Wh/dia)	7 40 13188	40 15554 94%	40 12878	40 15781	40 13188	40 15554 94%	13393	16413	14202	16968 47 %	14423	17675

Considerando os resultados obtidos no cálculo é possível constatar que:

 Para sistemas que operam com controlador PWM, quando ocorreu o aumento da temperatura ambiente de 14 °C para 38 °C e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 1,55 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células na cor verde), ou seja, o aumento da temperatura resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse aumento na produção energética para temperaturas ambiente mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);

- Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da temperatura ambiente de 14 °C para 38 °C e o número de módulos fotovoltaicos manteve-se o mesmo, houve uma queda na produção de energia de 10,71 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando a comparação entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando em uma temperatura ambiente de 14 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 39 % (células na cor azul-claro) em relação a sistemas com controladores PWM. Entretanto, quando a temperatura ambiente é de 38 °C, essa diferença acaba caindo e ficando em 23 % (células na cor amarela);
- Para algumas potências de cargas (células na cor azul) e com os sistemas operando com controladores de cargas MPPT, o aumento da temperatura ambiente de 14 °C para 38 °C, resultou em um aumentou na quantidade de módulos fotovoltaicos afim de se manter a produção energética. Esse aumento na quantidade de módulos ocorreu, pois com o aumento da temperatura, o nível da tensão produzida diminuiu causando uma queda na potência do módulo fotovoltaico. Entretanto, em alguns casos esse aumento resultou no acréscimo da produção energética, porém em outros, houve redução na produção de energia. Esse comportamento é explicado nas seções 2.2.4 e 2.4.1.3;

- Sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superior aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Para algumas potências de cargas (células na cor cinza) e com os sistemas operando com controladores de cargas PWM, o aumento da temperatura ambiente de 14 °C para 38 °C, resultou em uma diminuição na quantidade de módulos fotovoltaicos. Essa queda na quantidade de módulos, deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é mesmo, sofrendo um aumento na quantidade, para as potências de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorreu para ajustar a quantidade de baterias em série, cada uma com a tensão nominal de 12 V, com a tensão do sistema que é de 48 V.

3.4.5 Sistemas com módulo fotovoltaico de 60 células e radiação em 5,05 kWh/m².dia. Temperatura ambiente de 14 °C e 38 °C.

A Tabela 5 apresenta os resultados das simulações para verificar o efeito da variação da temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulos de 60 células. Nessas

simulações foi considerada a radiação solar em 5,05 kWh/m²/dia e a temperatura ambiente de $14~^{\circ}\text{C}$ e $38~^{\circ}\text{C}$.

Tabela 4 – Sistemas com módulos de 60 células e 5,05 kWh/m²/dia

Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2				4	7	Ι	4	8	- 10
Temperatura Ambiente (°C)	14	.00		.00	14	.00	200	.00	14	,00		.00
Tecnologia do Controlador	PWM	MPPT		MPPT		MPPT		MPPT	PWM		PWM	
Quantidade Módulos	2	1	2	1	1	1	1	1	2	2	2	2
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	4	4	4	4
Produção de Energia (Wh/dia)	1045	1237	1058	1106	1045	1237	1058	1106	2089	2475	2116	2212
%Produção de energia (MPPT x PWM)		43%		2%		3%		%		8%		%
% Produção de energia (PWM x PWM)	,	1,2	-			1,2	8%			1,2	8%	
% Produção de energia (MPPT x MPPT)		-10,	61%			- 100	61%				61%	
Potência da Carga (W)						- 50	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38	,00
Tecnologia do Controlador	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ
Quantidade Módulos	7	4	7	4	4	4	8	4	4	4	6	6
Quantidade Controlador	2	2	2	2	2	2	2	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3657	4949	3703	4424	4179	4949	4232	4424	4179	4949	4232	6636
%Produção de energia (MPPT x PWM)	35,	34%	19,	46%	18	3%	4,5	2%	18	8%	57	7%
% Produção de energia (PWM x PWM)		1,2	8%			1,2	8%			1,2	8%	
% Produção de energia (MPPT x MPPT)		-10,	61%			-10,	61%			34,0	4,08%	
Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	МРРТ	PWM	МРРТ	PWM	MPPT
Quantidade Módulos	13	7	13	7	7	7	14	8	8	8	12	9
Quantidade Controlador	4	2	4	2	2	2	2	2	2	2	2	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6791	8661	6877	7742	7313	8661	7407	8848	8358	9898	8465	9954
%Produção de energia (MPPT x PWM)	27,	54%	12,	56%	18	8%	19,	46%	18	8%	17,	59%
% Produção de energia (PWM x PWM)		1,2	8%			1,2	8%			1,2	8%	
% Produção de energia (MPPT x MPPT)		-10,	61%			2,1	6%			0,5	6%	
Potência da Carga (W)						20	00					
Tensão do sistema (V)		1	2			2	4	18		4	8	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	25	13	25	14	13	13	26	14	14	14	21	15
Quantidade Controlador	7	4	7	4	4	4	4	2	2	2	2	2
Quantidade Baterias	40	40	40	40	40	40	40	40	40	40	40	40
Produção de Energia (Wh/dia)		16084	13226	15483	13582	16084	13755	15483	14626	17322	14813	16589
%Produção de energia (MPPT x PWM)	23,	16%	17,	07%	18	8%	12,	56%	18	8%	11,	99%
% Produção de energia (PWM x PWM)		1,2	8%			1,2	8%			1,2	8%	
% Produção de energia (MPPT x MPPT)		-3,7	4%			-3,7	4%			-4,2	23%	

Fonte: o autor.

Analisando os resultados foi possível chegar as seguintes conclusões:

- Para sistemas que operam com controlador PWM, quando ocorreu o aumento da temperatura ambiente de 14 °C para 38 °C e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 1,28 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células na cor verde), ou seja, o aumento da temperatura resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse aumento na produção energética para temperaturas ambiente mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);
- Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da temperatura ambiente de 14 °C para 38 °C e o número de módulos fotovoltaicos manteve-se o mesmo, houve uma queda na produção de energia de 10,61 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando a comparação entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando em uma temperatura ambiente de 14 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 18 % (células na cor azul-claro) em relação há sistemas com controladores PWM. Entretanto, quando a temperatura ambiente é de 38 °C, essa diferença acaba caindo e ficando em 5 % (células na cor amarela), e em alguns casos ela acaba subindo e alcançado 57 % (células na cor vermelha);
- Para algumas potências de cargas (células na cor azul) e com os sistemas operando com controladores de cargas MPPT, o aumento da temperatura ambiente de 14 °C para 38
 °C, resultou em um aumentou na quantidade de módulos fotovoltaicos afim de se manter

a produção energética. Esse aumento na quantidade de módulos ocorreu, pois com o aumento da temperatura, o nível da tensão produzida diminuiu causando uma queda na potência do módulo fotovoltaico. Entretanto, em alguns casos esse aumento resultou no acréscimo da produção energética, porém em outros, ouve redução na produção de energia. Esse comportamento é explicado nas seções 2.2.4 e 2.4.1.3;

- Sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superior aos sistemas que operam com controladores MPPT, para uma mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é o mesmo, sofrendo um aumento na quantidade, para as potências de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.4.6 Sistemas com módulo fotovoltaico de 72 células e radiação em 5,05 kWh/m².dia. Temperatura ambiente de 14 °C e 38 °C.

A Tabela 6 apresenta os resultados das simulações para verificar o efeito da variação da temperatura ambiente no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulos de 72 células. Nessas simulações foi considerada a radiação solar em 5,05 kWh/m²/dia e a temperatura ambiente de 14 °C e 38 °C.

Tabela 5 – Sistemas com módulos de 72 células e 5,05 kWh/m²/dia

Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2				4				18	
Temperatura Ambiente (°C)	1/1	,00		.00	1/1	,00		,00	1/1	,00		,00
Tecnologia do Controlador	PWM		-	MPPT		MPPT		MPPT		MPPT		
Quantidade Módulos	2	1	2	1	1	1	1	1	2	2	2	2
Quantidade Modulos Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	4	4	4	4
Quantidade Baterias	1061	1520	1074	7	1061		1074		2121	3040		
Produção de Energia (Wh/dia)		33%		1364 98%	-	1520		1364 98%			2148	2727 98%
%Produção de energia (MPPT x PWM)	43,		6%	9870	45,	33%	6%	9870	45,	33%	26%	9870
% Produção de energia (PWM x PWM)	8		V 100000					-				
% Produção de energia (MPPT x MPPT)		-10,	30%			-10,	30%			-10,	,30%	
Potência da Carga (W)						50	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	МРРТ
Quantidade Módulos	7	3	6	3	4	3	3	3	4	4	4	4
Quantidade Controlador	2	1	2	1	2	1	1	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3712	4560	3221	4091	4242	4560	3221	4091	4242	6080	4295	5454
%Produção de energia (MPPT x PWM)	22,	86%	26,	98%	7,5	0%	26,	98%	43,	33%	26,	98%
% Produção de energia (PWM x PWM)		-13,	21%			-24,	06%			1,2	26%	
% Produção de energia (MPPT x MPPT)		-10,	30%			-10,	30%			-10,	,30%	
Potência da Carga (W)						10	00	2	2			
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	14	,00	38	,00	14	,00	38	,00	14	,00	38	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	13	6	12	6	7	6	6	6	8	6	6	6
Quantidade Controlador	4	2	4	2	2	2	2	2	2	1	1	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6893	9120	6443	8181	7424	9120	6443	8181	8484	9120	6443	8181
%Produção de energia (MPPT x PWM)	32,	31%	26,	98%	22,8	86%	26,	98%	7,5	0%	26,	98%
% Produção de energia (PWM x PWM)		-6,5	3%			-13,	21%			-24,	,06%	
% Produção de energia (MPPT x MPPT)		-10,	30%			-10,	30%			-10,	30%	
Potência da Carga (W)						20	00					
Tensão do sistema (V)		1	2			2	4			4	18	
Temperatura Ambiente (°C)	14	,00	38	,00	14,	,00	38,	,00	14	,00	38,	,00
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	25	11	24	12	13	11	12	12	14	12	12	12
Quantidade Controlador	7	3	7	4	4	3	4	4	2	2	2	2
Quantidade Baterias	40	40	40	40	40	40	40	40	40	40	40	40
Produção de Energia (Wh/dia)	13256	16721	12886	16362	13787	16721	12886	16362	14847	18241	12886	16362
										0.00/	2.2	000/
%Produção de energia (MPPT x PWM)		13%	26,9	98%	21,2	28%	26,9	98%	22,	86%	26,9	9070
		13% -2,7		98%	21,2	28% -6,5		98%	22,		26,9 21%	9070

Analisando os resultados foi possível chegar as seguintes conclusões:

 Para sistemas que operam com controlador PWM, quando ocorreu o aumento da temperatura ambiente de 14 °C para 38 °C e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 1,26 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células na cor verde), ou seja, o aumento da temperatura resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse aumento na produção energética para temperaturas ambiente mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);

- Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da temperatura ambiente de 14 °C para 38 °C e o número de módulos fotovoltaicos manteve-se o mesmo, houve uma queda na produção de energia de 10,30 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando a comparação entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando em uma temperatura ambiente de 14 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 43,33 % (células na cor azul-claro) em relação há sistemas com controladores PWM. Entretanto, quando a temperatura ambiente é de 38 °C, essa diferença acaba caindo e ficando em 26,98 % (células na cor amarela);
- Para algumas potências de cargas (células na cor azul) e com os sistemas operando com controladores de cargas MPPT, o aumento da temperatura ambiente de 14 °C para 38 °C, resultou em um aumentou na quantidade de módulos fotovoltaicos afim de se manter a produção energética. Esse aumento na quantidade de módulos ocorreu, pois com o aumento da temperatura, o nível da tensão produzida diminuiu causando uma queda na potência do módulo fotovoltaico. Mesmo com o aumento na quantidade de módulos não ocorreu o acréscimo na produção energética. Esse comportamento é explicado nas seções 2.2.4 e 2.4.1.3;

- Sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superior aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM e com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Para algumas potências de cargas (células na cor cinza) e com os sistemas operando com controladores de cargas PWM, o aumento da temperatura ambiente de 7 °C para 30 °C, resultou em uma diminuição na quantidade de módulos fotovoltaicos. Essa queda na quantidade de módulos, deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2);
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é o mesmo, sofrendo um aumento na quantidade, para as potências de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.5 DETERMINAÇÃO DA INFLUÊNCIA DA RADIAÇÃO SOLAR NO DIMENSIONAMENTO DE UM SISTEMA FOTOVOLTAICO *OFF-GRID*

Para determinar a influência que o nível de radiação solar exerce no dimensionamento do sistema fotovoltaico *off-grid*, foram realizadas as seguintes simulações:

- Para o mês de junho, aonde o nível de radiação solar é de 3,73 kWh/m²/dia.
 Para esse mês a temperatura ambiente utilizada foi a de 19,07 °C, que é a temperatura média para esse mês e,
- Para o mês de dezembro, aonde o nível de radiação solar é de 5,05 kWh/m²/dia. Para esse mês a temperatura utilizada foi a de 24,71 °C, que é a temperatura média para esse mês.

As simulações foram realizadas para sistemas com módulos de 36 células, 60 células e 72 células; controladores com tecnologia PWM e MPPT; tensão do sistema em 12 V, 24 V e 48 V e para as cargas de 100 W, 500 W, 1000 W e 2000 W. Os resultados são apresentados a seguir:

3.5.1 Sistemas com módulo fotovoltaico de 36 células e radiação em 3,73 e 5,05 kWh/m²/dia e temperatura ambiente respectivamente em 19,07 °C e 24,71 °C

A Tabela 7 apresenta os resultados das simulações para verificar o efeito da variação da radiação solar no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulo de 36 células. Nessas simulações foi considerada a radiação solar de 3,73 kWh/m²/dia para a temperatura ambiente de 19,07 °C e a radiação solar de 5,05 kWh/m²/dia para a temperatura ambiente de 14 °C e 38 °C.

Tabela 6 – Sistemas com módulo fotovoltaico de 36 células

Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ	PWM	МРРТ
Quantidade Módulos	2	2	2	2	2	2	2	2	4	4	4	4
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	4	4	4	4
Produção de Energia (Wh/dia)	752	1022	1022	1353	752	1022	1022	1353	1504	2044	2043	2707
%Produção de energia (PWM x PWM)		35,	87%			35,8	37%			35,8	37%	
% Produção de energia (MPPT x MPPT)		32,4	42%			32,4	42%			32,4	12%	
Potência da Carga (W)						50	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	9	8	7	6	10	8	8	6	12	8	8	8
Quantidade Controlador	3	2	2	2	2	1	2	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3384	4088	3576	4060	3760	4088	4087	4060	4512	4088	4087	5414
%Produção de energia (PWM x PWM)		5,6	8%			8,7	0%				12%	
% Produção de energia (MPPT x MPPT)		-0,6	58%			-0,6	8%			32,4	12%	
Potência da Carga (W)						10	00					
Tensão do sistema (V)	8	1	2	16		2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	17	15	13	12	18	16	14	12	20	16	16	12
Quantidade Controlador	5	4	4	4	3	2	2	2	2	1	2	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6392	7665	6641	8120	6768	8176	7152	8120	7520	8176	8174	8120
%Produção de energia (PWM x PWM)		-	0%			-	8%			-	0%	
% Produção de energia (MPPT x MPPT)		5,9	4%				8%			-0,0	8%	
Potência da Carga (W)							000					- 8
Tensão do sistema (V)	_		2				24				8	
Nivel de Radiação (kWh/m².dia)	_	.73		05	_	73	_	05		73		05
Temperatura Ambiente (°C)		,07		,71		,07		,71		,07		,71
Tecnologia do Controlador		МРРТ		MPPT		МРРТ		MPPT		MPPT		MPPT
Quantidade Módulos	34	30	25	23	34	30	26	24	36	32	28	24
Quantidade Controlador	9	8	7	6	5	4	4	4	3	2	2	2
Quantidade Baterias	12792	40	12771	40	12792	40	40	40	40	40	40	40
Produção de Energia (Wh/dia)	12783		12771	15564	12/83	15330		10241	13335		14304	10241
W Droducão do oporais (DIA/M v DIA/M)		0.4	na%			2.0				E 4	30.94	
%Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT)			3%				00% 04%				8% 58%	

 Para sistemas que operam com controlador PWM, quando ocorreu o aumento da radiação de 3,73 kWh/m²/dia para 5,05 kWh/m²/dia e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 35,87
 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células na cor branca), ou seja, o aumento da radiação resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse fenômeno é explicado na seção 2.2.3.

O aumento no nível da radiação para 5,05 kWh/m²/dia ocasionou a queda na quantidade de módulos para algumas potências de cargas, porém essa redução não provocou uma queda na produção energética, pelo contrário, houve um aumento (células na cor vermelho). Para esses casos o aumento da radiação ocasionou a redução no número de módulos, porém a produção energética atende à demanda da carga.

Porém, para outras configurações (células na cor amarelo), com a redução no número de módulos fotovoltaicos, houve a redução na produção energética.

Em relação a variação na temperatura que exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior no mês com maior nível de radiação maior, sua influência foi atenuada, pois com nível de radiação maior mais energia foi produzida pelo módulo fotovoltaico, diminuído o seu efeito sobre a produção energética.

Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da radiação de 3,73 kWh/m²/dia para 5,05 kWh/m²/dia e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 32,42% para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da radiação resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado na seção 2.2.3;

O aumento no nível da radiação para 5,05 kWh/m²/dia ocasionou a queda na quantidade de módulos para algumas potências de cargas, porém essa redução não provocou uma queda na produção enérgica, pelo contrário, houve um aumento (células na cor azul). Para esses casos, o aumento da radiação ocasionou a redução no número de módulos, porém a produção energética atende à demanda da carga. Entretanto, para outras configurações (células na cor verde), com a redução no número de módulos fotovoltaicos, houve a redução na produção energética;

Em relação a variação na temperatura que exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior no mês com maior nível de radiação maior, sua influência foi atenuada, pois com nível de radiação maior mais energia foi produzida pelo módulo fotovoltaico, diminuído o seu efeito sobre a produção energética;

• Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é o mesmo, sofrendo um aumento na quantidade, para as potências de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.5.2 Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 e 5,05 kWh/m²/dia e temperatura ambiente respectivamente em 19,07 °C e 24,71 °C

A Tabela 8 apresenta os resultados das simulações para verificar o efeito da variação da radiação solar no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulo de 60 células. Nessas simulações foi considerada a radiação solar de 3,73 kWh/m²/dia para a temperatura ambiente de 19,07 °C e a radiação solar de 5,05 kWh/m²/dia para a temperatura ambiente de 14 °C e 38 °C.

Tabela 7 – Sistemas com módulo fotovoltaico de 60 células

	0/2											
Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2		1	2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	МРРТ	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	2	1	2	1	1	1	1	1	2	2	2	2
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	4	4	4	4
Produção de Energia (Wh/dia)	773	891	1051	1177	773	891	1051	1177	1547	1783	2102	2353
%Produção de energia (PWM x PWM)		35,	86%			35,8	86%			35,8	36%	
% Produção de energia (MPPT x MPPT)		31,	99%			31,9	99%			31,9	99%	
Potência da Carga (W)						50	00					
Tensão do sistema (V)		1	2			2	4		1111	4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	МРРТ	PWM	MPPT	PWM	МРРТ	PWM	MPPT	PWM	МРРТ
Quantidade Módulos	9	5	7	4	10	6	8	4	9	6	6	6
Quantidade Controlador	3	2	2	2	2	1	2	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3481	4457	3678	4707	3867	5349	4203	4707	4641	5349	4203	7060
%Produção de energia (PWM x PWM)		5,6	7%			8,6	9%			-9,4	13%	
% Produção de energia (MPPT x MPPT)		5,5	9%			-12,	01%			31,9	99%	
Potência da Carga (W)						10	00					
Tensão do sistema (V)	V:	1	2			2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	17	9	13	7	18	10	14	8	15	9	12	9
Quantidade Controlador	5	3	4	2	3	2	2	2	2	1	2	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6574	8023	6830	8237	6961	8915	7356	9413	7735	8023	8406	10590
%Produção de energia (PWM x PWM)		3,8	9%			5,6	7%			8,6	9%	
% Produção de energia (MPPT x MPPT)		2,6	6%			5,5	9%			31,9	99%	
Potência da Carga (W)	97 15.			1	VS	20	00	4.0				
Tensão do sistema (V)		1	2			2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	33	18	25	13	34	18	26	14	27	18	21	15
Quantidade Controlador	9	5	7	4	5	3	4	2	3	2	2	2
Quantidade Baterias	40	40	40	40	40	40	40	40	40	40	40	40
Dandone de Canada (MAIN/Alla)			40405	15206	12140	16046	12660	16472	13922	16046	1/1711	17650
Produção de Energia (Wh/dia)	12762	16046	13135	15290	13149		V	104/3	13322			
%Produção de Energia (WM/dia) %Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT)	12762		13135 2%	15290	13149		9%	10473	13322		7%	

• Para sistemas que operam com controlador PWM, quando ocorreu o aumento da radiação de 3,73 kWh/m²/dia para 5,05 kWh/m²/dia e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 35,86 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células

na cor branca), ou seja, o aumento da radiação resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia PWM. Esse fenômeno é explicado na seção 2.2.3.

O aumento no nível da radiação para 5,05 kWh/m²/dia ocasionou a queda na quantidade de módulos para algumas potências de cargas, porém essa redução não provocou uma queda na produção energética, pelo contrário, houve um aumento (células na cor vermelho). Para esses casos o aumento da radiação ocasionou a redução no número de módulos, porém a produção energética atende à demanda da carga.

Porém para outras configurações (células na cor amarelo), com a redução no número de módulos fotovoltaicos, houve a redução na produção energética.

Em relação a variação na temperatura que exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior no mês com maior nível de radiação maior, sua influência foi atenuada, pois com nível de radiação maior mais energia foi produzida pelo módulo fotovoltaico, diminuído o seu efeito sobre a produção energética.

Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da radiação de 3,73 kWh/m²/dia para 5,05 kWh/m²/dia e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 31,99 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da radiação resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado na seção 2.2.3;

O aumento no nível da radiação para 5,05 kWh/m²/dia ocasionou a queda na quantidade de módulos para algumas potências de cargas, porém essa redução não provocou uma queda na produção enérgica, pelo contrário, houve um aumento (células na cor azul). Para esses casos, o aumento da radiação ocasionou a redução no número de módulos, porém a produção energética atende à demanda da carga. Porém, para outras configurações (células na cor verde), com a redução no número de módulos fotovoltaicos, houve a redução na produção energética;

Em relação a variação na temperatura que exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior no mês com maior nível de radiação maior, sua influência foi atenuada, pois com nível de radiação maior mais energia foi produzida pelo módulo fotovoltaico, diminuído o seu efeito sobre a produção energética;

• Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é mesmo, sofrendo um aumento na quantidade, para as potencias de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.5.3 Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 e 5,05 kWh/m²/dia e temperatura ambiente respectivamente em 19,07 °C e 24,71 °C

A Tabela 9 apresenta os resultados das simulações para verificar o efeito da variação da radiação solar no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulo de 72 células. Nessas simulações foi considerada a radiação solar de 3,73 kWh/m²/dia para a temperatura ambiente de 19,07 °C e a radiação solar de 5,05 kWh/m²/dia para a temperatura ambiente de 14 °C e 38 °C.

Tabela 8 – Sistemas com módulo fotovoltaico de 72 células

Detência da Carga (MI)						4	00					
Potência da Carga (W) Tensão do sistema (V)		- 1	2				4	-			8	
Nivel de Radiação (kWh/m².dia)	2	73	z 5,	OE.	2	73	-	05	2	73	5,0	OE.
		.07	_		_			.71	_	.07	_	.71
Temperatura Ambiente (°C)				,71	PWM	,07					PWM	
Tecnologia do Controlador	PWM		PWM					MPPT		MPPT		V.5.12
Quantidade Módulos	2	1	2	1	1	1	1	1	2	2	2	2
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2 1067	2	2	2 1097	2 1067	2	4	4	4 2133	4
Produção de Energia (Wh/dia)	785	1097	85%	1449	785	35,8		1449	1570	2193	2133	2899
%Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT)			17%			32,				32,		
% Produção de energia (MPP1 X MPP1)		32,	L/70			32,.	L/70	- 6		32,.	L/70	
Potência da Carga (W)						5	00					
Tensão do sistema (V)		1	2			2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,0	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	9	4	6	3	5	4	3	3	6	4	4	4
Quantidade Controlador	3	2	2	1	2	2	1	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	12	12	12	12
Produção de Energia (Wh/dia)	3533	4386	3200	4348	3925	4386	3200	4348	4711	4386	4266	5797
%Produção de energia (PWM x PWM)		-9,4	13%			-18,	49%			-9,4	13%	
% Produção de energia (MPPT x MPPT)		-0,8	38%			-0,8	88%			32,	17%	
Potência da Carga (W)						10	00					
Tensão do sistema (V)		1	2			2	4	- 0		4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,0	05	3,	73	5,0	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	17	7	12	6	9	7	6	6	10	8	6	6
Quantidade Controlador	5	2	4	2	3	2	2	2	2	2	1	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6673	7676	6399	8696	7066	7676	6399	8696	7851	8773	6399	8696
%Produção de energia (PWM x PWM)		-4,1	L0%			-9,4	13%			-18,	49%	
% Produção de energia (MPPT x MPPT)		13,	28%			13,2	28%			-0,8	88%	
Potência da Carga (W)						20	000					
Tensão do sistema (V)		1	2			2	4			4	8	
Nivel de Radiação (kWh/m².dia)	3,	73	5,	05	3,	73	5,	05	3,	73	5,	05
Temperatura Ambiente (°C)	19	,07	24	,71	19	,07	24	,71	19	,07	24	,71
Tecnologia do Controlador	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT	PWM	MPPT
Quantidade Módulos	33	14	24	11	17	14	12	11	18	14	12	12
Quantidade Controlador	9	4	7	3	5	4	4	3	3	2	2	2
Quantidade Baterias	40	40	40	40	40	40	40	40	40	40	40	40
Produção de Energia (Wh/dia)	12954	15353	12799	15943	13347	15353	12799	15943	14132	15353	12799	17392
%Produção de energia (PWM x PWM)		-1,2	20%			-4,2	10%			-9,4	13%	
% Produção de energia (MPPT x MPPT)		3,8	4%			3,8	4%			13,	28%	

• Para sistemas que operam com controlador PWM, quando ocorreu o aumento da radiação de 3,73 kWh/m²/dia para 5,05 kWh/m²/dia e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 35,85 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células na cor branca), ou seja, o aumento da radiação resulta em um aumento na produção de

energia em sistemas que utilizam o controlador com tecnologia PWM. Esse fenômeno é explicado na seção 2.2.3.

O aumento no nível da radiação para 5,05 kWh/m²/dia ocasionou a queda na quantidade de módulos para algumas potências de cargas, porém essa redução provocou uma queda na produção energética (células na cor amarelo), ou seja, com a redução no número de módulos fotovoltaicos, houve a redução na produção energética.

Em relação a variação na temperatura que exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior no mês com maior nível de radiação maior, sua influência foi atenuada, pois com nível de radiação maior mais energia foi produzida pelo módulo fotovoltaico, diminuído o seu efeito sobre a produção energética.

• Para sistemas que operam com controlador MPPT, quando ocorreu o aumento da radiação de 3,73 kWh/m²/dia para 5,05 kWh/m²/dia e o número de módulos fotovoltaicos manteve-se o mesmo, houve um aumento na produção de energia de 32,17 % para algumas potências de cargas e para alguns níveis de tensão do sistema (células em laranja), ou seja, o aumento da radiação resulta em um aumento na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Esse fenômeno é explicado na seção 2.2.3;

O aumento no nível da radiação para 5,05 kWh/m²/dia ocasionou a queda na quantidade de módulos para algumas potências de cargas, porém essa redução não provocou uma queda na produção enérgica, pelo contrário, houve um aumento (células na cor azul). Para esses casos, o aumento da radiação ocasionou a redução no número de módulos, porém a produção energética atende à demanda da carga. Porém, para outras configurações (células na cor verde), com a redução no número de módulos fotovoltaicos, houve a redução na produção energética;

Em relação a variação na temperatura que exerce influência sobre as características elétricas do módulo fotovoltaico, e apesar de seu nível ser maior no mês com maior nível de radiação maior, sua influência foi atenuada, pois com nível de radiação maior mais energia foi produzida pelo módulo fotovoltaico, diminuído o seu efeito sobre a produção energética;

Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é mesmo, sofrendo um aumento na quantidade, para as potencias de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V.
 Esse aumento na quantidade de baterias ocorreu para ajustar a quantidade de baterias

em série, cada uma com a tensão nominal de 12 V, com a tensão do sistema que é de 48 V.

3.6 COMPARATIVO DE PRODUÇÃO ENERGÉTICA ENTRE TEMPERATURA MÍNIMA, MÉDIA E MÁXIMA

O dimensionamento do sistema fotovoltaico *off-grid*, conforme apresentado na seção 2.7 é determinado pelo mês que possui o pior nível de radiação solar. A temperatura ambiente utilizada para a correção das características elétricas do módulo fotovoltaico é a temperatura média para este mês. A seguir, é apresentado os resultados das simulações aonde foi realizado uma comparação entre as temperaturas mínima, média e máxima para o mês de junho, pior nível de radiação para a cidade de Florianópolis/SC, afim de ser confirmar se o dimensionamento realizado pela temperatura média está coerente com o apresentado na seção 2.7.

3.6.1 Sistemas com módulo fotovoltaico de 32 células e radiação em 3,73 kWh/m²/dia e temperatura ambiente em 7 °C, 19,07 °C e 30 °C

A Tabela 10 apresenta os resultados das simulações afim de se verificar o efeito da variação da radiação solar no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulo de 36 células. Nessas simulações foi considerada a radiação solar de 3,73 kWh/m²/dia para a temperatura ambiente de 7 °C, 19,07 °C e 30 °C.

Potência da Carga (W) Tensão do sistema (V) Temperatura Ambiente (°C) 7,00 19,07 30,00 7,00 19,07 30.00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 MPPT MPPT MPPT Tecnologia do Controlador PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM Quantidade Módulos Quantidade Controlador Quantidade Baterias Produção de Energia (Wh/dia) 1082 1022 1491 1504 1515 2163 2044 1940 %Produção de energia (MPPT x PWM) -0,71% % Produção de energia (PWM x PWM) -0,71% -0,71% % Produção de energia (MPPT x MPPT) Potência da Carga (W) Tensão do sistema (V) 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 Temperatura Ambiente (°C) 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 мррт мррт PWM PWM Tecnologia do Controlador PWM PWM **PWM** MPPT PWM PWM PWM MPPT MPPT MPPT PWM MPPT MPPT MPPT Quantidade Módulos Quantidade Controlador Quantidade Baterias Produção de Energia (Wh/dia) 4474 4512 %Produção de energia (MPPT x PWM) 20.81% 8.73% % Produção de energia (PWM x PWM) 0,71% -0,71% % Produção de energia (MPPT x MPPT) Potência da Carga (W) Tensão do sistema (V) Temperatura Ambiente (°C) 7.00 19.07 30.00 7.00 19.07 30.00 7,00 19,07 30,00 7.00 19.07 7,00 19,07 30,00 30,00 7,00 19,07 30,00 Tecnologia do Controlador PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT Quantidade Módulos Quantidade Controlador Quantidade Baterias 6437 8113 7573 8654 8176 7758 Produção de Energia (Wh/dia) 6711 6768 7457 7520 %Produção de energia (MPPT x PWM) % Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT) Potência da Carga (W) Tensão do sistema (V) Temperatura Ambiente (°C) 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT PWM PWM PWM MPPT MPPT MPPT Tecnologia do Controlador MPPT Quantidade Módulos Quantidade Controlado Quantidade Baterias 13423 13535 13632 17307 16352 15517 Produção de Energia (Wh/dia) 13050 | 12783 | 12875 | 15685 | 15330 | 15517 13423 12783 12875 16226 15330 %Produção de energia (MPPT x PWM) 19.92% 19.92% 20.81% % Produção de energia (PWM x PWM) -2.26% % Produção de energia (MPPT x MPPT)

Tabela 9 – Sistemas com módulo fotovoltaico de 32 células e radiação em 3,73 kWh/m²/dia

- Para sistemas que operam com controlador PWM e onde o número de módulos fotovoltaicos manteve-se o mesmo, quando se compara o sistema dimensionado pela temperatura média 19,07 °C, com a temperatura mínima de 7 °C, ocorreu um aumento na produção de energia de 0,84 % para potências de cargas e para níveis de tensão do sistema (células na cor azul), ou seja, o aumento da temperatura resulta em um aumento na produção de energia. Porém, quando se compara a temperatura média com a temperatura máxima, a produção de energia sofre uma queda de 0,71 % (células na cor verde-claro). Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.2;
- Para algumas potências de cargas (células na cor marrom) e com os sistemas operando com controladores de cargas PWM, o aumento da temperatura ambiente de 7 °C para

- 19,07 °C, resultou em uma diminuição na quantidade de módulos fotovoltaicos e essa redução casou uma diminuição na produção energética.
- Para sistemas que operam com controlador MPPT, e onde o número de módulos fotovoltaicos manteve-se o mesmo, quando se compara o sistema dimensionado pela temperatura média 19,07 °C, pelo sistema dimensionado com a temperatura mínima de 7 °C, houve uma queda na produção de energia de 5,52 % para as potências de cargas e níveis de tensão do sistema (células na cor laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Porém, quando se compara a temperatura média com a temperatura máxima, a produção de energia sofre um acréscimo de 5,38 % (células na cor amarelo). Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando um comparativo entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando na temperatura ambiente de 19,07 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 35,91 % (células na cor verde) em relação há sistemas com controladores PWM.
- Para algumas potências de cargas (células na cor vermelha) e com os sistemas operando com controlador de carga MPPT, quando se compara o sistema dimensionado com a temperatura ambiente de 19,07 °C com o de 30 °C, o sistema de 19,07 °C apresenta uma queda na produção de energia e isso se deve ao fato de que a quantidade de módulos fotovoltaicos é menor para esse sistema. Isso é explicado nos itens 2.2.4 e 2.4.1.3;
- Os sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superiores aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM, com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é mesmo, sofrendo um aumento na quantidade, para as potencias de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.6.2 Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 kWh/m²/dia e temperatura ambiente em 7 °C, 19,07 °C e 30 °C

A Tabela 11 apresenta os resultados das simulações para verificar o efeito da variação da radiação solar no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulo de 60 células. Nessas simulações foi considerada a radiação solar de 3,73 kWh/m²/dia para a temperatura ambiente de 7 °C, 19,07 °C e 30 °C.

Tabela 10 – Sistemas com módulo fotovoltaico de 60 células e radiação em 3,73 kWh/m²/dia

Potência da Carga (W)									:	L00								
Tensão do sistema (V)			1	2					2	24						48		
Temperatura Ambiente (°C)	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00
Tecnologia do Controlador	PWM	PWM	PWM	MPPT	MPPT	MPPT	PWM	PWM	PWM	MPPT	MPPT	MPPT	PWM	PWM	PWM	MPPT	MPPT	MPPT
Quantidade Módulos	2	2	2	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Quantidade Controlador	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Quantidade Baterias	2	2	2	2	2	2	2	2	2	2	2	2	4	4	4	4	4	4
Produção de Energia (Wh/dia)	769	773	778	940	891	850	769	773	778	940	891	850	1538	1547	1556	1880	1783	1701
%Produção de energia (MPPT x PWM)			15,2	26%					15,	26%					15	,26%		
% Produção de energia (PWM x PWM)	0,58%		-0,58%				0,58%		-0,58%				0,58%		-0,58%			
% Produção de energia (MPPT x MPPT)				-5,16%		4,82%				-5,16%		4,82%				-5,16%		4,82%
Potência da Carga (W)										500								
Tensão do sistema (V)			1	2					- 1	24						48		
Temperatura Ambiente (°C)	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00
Tecnologia do Controlador	PWM	PWM	PWM	МРРТ	MPPT	MPPT	PWM	PWM	PWM	MPPT	МРРТ	MPPT	PWM	PWM	PWM	MPPT	MPPT	МРРТ
Quantidade Módulos	9	9	9	5	5	5	5	10	10	5	6	6	6	9	9	6	6	6
Quantidade Controlador	3	3	3	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1
Quantidade Baterias	10	10	10	10	10	10	10	10	10	10	10	10	12	12	12	12	12	12
Produção de Energia (Wh/dia)	3460	3481	3501	4700	4457	4252	3845	3867	3890	4700	5349	5103	4614	4641	4668	5640	5349	5103
%Produção de energia (MPPT x PWM)			28,0	06%					38,	31%					15	,26%		
% Produção de energia (PWM x PWM)	0,58%		-0,58%				0,58%		-0,58%				0,58%		-0,58%			
% Produção de energia (MPPT x MPPT)				-5,16%		4,82%				13,81%		4,82%				-5,16%		4,82%
Potência da Carga (W)									1	000								
Tensão do sistema (V)			1	2					- 1	24						48		
Temperatura Ambiente (°C)	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00	7,00	19,07	30,00
Tecnologia do Controlador	PWM	PWM	PWM	MPPT	MPPT	MPPT	PWM	PWM	PWM	MPPT	MPPT	MPPT	PWM	PWM	PWM	MPPT	MPPT	MPPT
Quantidade Módulos	17	17	17	9	9	9	9	18	18	9	10	10	10	15	15	10	9	9
Quantidade Controlador	5	5	5	3	3	3	3	3	3	3	2	2	2	2	2	2	1	1
Quantidade Baterias	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Produção de Energia (Wh/dia)	6536	6574	6612	8460	8023	7654	6921	6961	7001	8460	8915	8504	7690	7735	7779	9400	8023	7654
%Produção de energia (MPPT x PWM)			22,0	04%					28,	06%					3	,73%		
% Produção de energia (PWM x PWM)	0,58%														-0.58%			
% Produção de energia (MPPT x MPPT)			-0,58%				0,58%		-0,58%				0,58%		-0,5870			
			-0,58%	-5,16%		4,82%	0,58%		-0,58%	5,38%		4,82%	0,58%		-0,5870	-14,64%		4,82%
Potência da Carga (W)			-0,58%	-5,16%		4,82%	0,58%			5,38% 000		4,82%	0,58%		-0,5870	-14,64%		4,82%
Potência da Carga (W) Tensão do sistema (V)	2		-0,58%			4,82%	0,58%		2			4,82%	0,58%		-0,58%	-14,64% 48		4,82%
	7,00	19,07			19,07	4,82% 30,00	7,00	19,07	2	000	19,07	4,82%	7,00	19,07	30,00		19,07	4,82% 30,00
Tensão do sistema (V)	7,00 PWM		1	2	19,07 MPPT			19,07 PWM	2	000	19,07 MPPT	,		19,07 PWM		48	19,07 MPPT	
Tensão do sistema (V) Temperatura Ambiente (°C)		19,07	1 30,00	7,00	,	30,00	7,00	,	30,00	000 24 7,00	-	30,00	7,00		30,00	48 7,00	,	30,00
Tensão do sistema (V) Temperatura Ambiente (°C) Tecnologia do Controlador	PWM	19,07 PWM	30,00 PWM	2 7,00 MPPT	MPPT	30,00 MPPT	7,00 PWM	PWM	30,00 PWM	000 24 7,00 MPPT	МРРТ	30,00 MPPT	7,00 PWM	PWM	30,00 PWM	48 7,00 MPPT	МРРТ	30,00 MPPT
Tensão do sistema (V) Temperatura Ambiente (°C) Tecnologia do Controlador Quantidade Módulos	PWM 34	19,07 PWM 33	30,00 PWM 33	2 7,00 MPPT 17	MPPT 18	30,00 MPPT 18	7,00 PWM 17	PWM 34	30,00 PWM 34	7,00 MPPT	MPPT 18	30,00 MPPT 18	7,00 PWM 18	PWM 27	30,00 PWM 27	48 7,00 MPPT 18	MPPT 18	30,00 MPPT 18
Tensão do sistema (V) Temperatura Ambiente (°C) Tecnologia do Controlador Quantidade Módulos Quantidade Controlador	PWM 34	19,07 PWM 33 9	30,00 PWM 33 9	2 7,00 MPPT 17 5	MPPT 18 5	30,00 MPPT 18 5	7,00 PWM 17 5 40	PWM 34 5	30,00 PWM 34 5	7,00 MPPT 17 5	MPPT 18 3	30,00 MPPT 18 3	7,00 PWM 18 3 40	27 3	30,00 PWM 27 3	48 7,00 MPPT 18 3	18 2	30,00 MPPT 18 2
Tensão do sistema (V) Temperatura Ambiente (°C) Tecnologia do Controlador Quantidade Módulos Quantidade Controlador Quantidade Baterias	9 40	19,07 PWM 33 9 40	30,00 PWM 33 9 40	2 7,00 MPPT 17 5 40 15979	18 5 40	30,00 MPPT 18 5 40	7,00 PWM 17 5 40	9WM 34 5 40	30,00 PWM 34 5 40 13225	7,00 MPPT 17 5 40	18 3 40	30,00 MPPT 18 3 40	7,00 PWM 18 3 40	27 3 40	30,00 PWM 27 3 40 14003	48 7,00 MPPT 18 3 40	18 2 40	30,00 MPPT 18 2 40
Tensão do sistema (V) Temperatura Ambiente (°C) Tecnologia do Controlador Quantidade Módulos Quantidade Controlador Quantidade Baterias Produção de Energia (Wh/dia)	9 40	19,07 PWM 33 9 40 12762	30,00 PWM 33 9 40 12836	2 7,00 MPPT 17 5 40 15979	18 5 40	30,00 MPPT 18 5 40	7,00 PWM 17 5 40	9WM 34 5 40	30,00 PWM 34 5 40 13225	7,00 MPPT 17 5 40 15979	18 3 40	30,00 MPPT 18 3 40	7,00 PWM 18 3 40	27 3 40	30,00 PWM 27 3 40 14003	48 7,00 MPPT 18 3 40 16919	18 2 40	30,00 MPPT 18 2 40

Fonte: o autor.

- Para sistemas que operam com controlador PWM e onde o número de módulos fotovoltaicos manteve-se o mesmo, quando se compara o sistema dimensionado pela temperatura média 19,07 °C, com a temperatura mínima de 7 °C, ocorreu um aumento na produção de energia de 0,58 % para potências de cargas e para níveis de tensão do sistema (células na cor azul), ou seja, o aumento da temperatura resulta em um aumento na produção de energia. Porém, quando se compara a temperatura média com a temperatura máxima, a produção de energia sofre uma queda de 0,58 % (células na cor verde-claro). Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.2;
- Para algumas potências de cargas (células na cor marrom) e com os sistemas operando com controladores de cargas PWM, o aumento da temperatura ambiente de 7 °C para 19,07 °C, resultou em um aumento na quantidade de módulos fotovoltaicos e esse aumento casou um incremento na produção energética de 0,58 %.
- Para sistemas que operam com controlador MPPT, e onde o número de módulos fotovoltaicos manteve-se o mesmo, quando se compara o sistema dimensionado pela temperatura média 19,07 °C, pelo sistema dimensionado com a temperatura mínima de 7 °C, houve uma queda na produção de energia de 5,16 % para as potências de cargas e níveis de tensão do sistema (células na cor laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Porém, quando se compara a temperatura média com a temperatura máxima, a produção de energia sofre um acréscimo de 4,82 % (células na cor amarelo). Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;
- Realizando um comparativo entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando na temperatura ambiente de 19,07 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 15,26 % (células na cor verde) em relação há sistemas com controladores PWM.
- Para algumas potências de cargas (células na cor cinza) e com os sistemas operando com controlador de carga MPPT, quando se compara o sistema dimensionado com a temperatura ambiente de 19,07 °C com o de 7 °C, o sistema de 19,07 °C apresenta um aumento na quantidade de módulos fotovoltaicos e esse aumento resultou em um incremento na produção energética. Isso é explicado nos itens 2.2.4 e 2.4.1.3;
- Os sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superiores aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos,

sistemas com PWM, com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;

• Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é mesmo, sofrendo um aumento na quantidade, para as potencias de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

3.6.3 Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 kWh/m²/dia e temperatura ambiente em 7°C, 19,07 °C e 30 °C.

A Tabela 12 apresenta os resultados das simulações para verificar o efeito da variação da radiação solar no dimensionamento de um sistema fotovoltaico *off-grid*, considerando potências de cargas de 100 W, 500 W, 1000 W e 2000 W, controladores de cargas PWM e MPPT, tensão do sistema em 12 V, 24 V e 48 V e módulo de 72 células. Nessas simulações foi considerada a radiação solar de 3,73 kWh/m²/dia para a temperatura ambiente de 7 °C, 19,07 °C e 30 °C.

Potência da Carga (W) Tensão do sistema (V) Temperatura Ambiente (°C) 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT Tecnologia do Controlador PWM PWM PWM MPPT Quantidade Módulos Quantidade Controlador Quantidade Baterias Produção de Energia (Wh/dia) %Produção de energia (MPPT x PWM) 39.68% % Produção de energia (PWM x PWM) -0,57% -0,57% -0,57% 5,00% % Produção de energia (MPPT x MPPT) -5,169 5,00% 5.00% Potência da Carga (W) Tensão do sistema (V) Temperatura Ambiente (°C) 7,00 | 19,07 | 30,00 | 7,00 | 19,07 | 30,00 7,00 | 19,07 | 30,00 | 7,00 | 19,07 | 30,00 7,00 19,07 30,00 7,00 19,07 30,00 Tecnologia do Controlador PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT Quantidade Módulos Quantidade Controlador **Quantidade Baterias** Produção de Energia (Wh/dia) 3513 3533 3553 4625 3903 3925 4625 4386 4684 4711 4737 4625 24.16% 11.74% %Produção de energia (MPPT x PWM) % Produção de energia (PWM x PWM) 5,009 5,00% % Produção de energia (MPPT x MPPT) 5,009 Potência da Carga (W) Tensão do sistema (V) Temperatura Ambiente (°C) 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 Tecnologia do Controlador PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT PWM PWM PWM MPPT MPPT MPPT Quantidade Módulos Quantidade Controlador **Quantidade Baterias** Produção de Energia (Wh/dia) 9250 8773 %Produção de energia (MPPT x PWM) 15.03% 8 64% 11.74% % Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT) 5,00% Potência da Carga (W) Tensão do sistema (V) 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 19,07 30,00 7,00 | 19,07 | 30,00 | 7,00 | 19,07 Temperatura Ambiente (°C) 30,00 PWM PWM **PWM** MPPT **MPPT** MPPT PWM PWM **PWM** MPPT MPPT PWM PWM **PWM** MPPT MPPT MPPT Tecnologia do Controlador MPPT Quantidade Módulos Quantidade Controlador Quantidade Baterias 12880 12954 13270 13347 14051 14132 16188 15353 Produção de Energia (Wh/dia) %Produção de energia (MPPT x PWM) 18.52% 15.03% 8.64% % Produção de energia (PWM x PWM) % Produção de energia (MPPT x MPPT)

Tabela 11 – Sistemas com módulo fotovoltaico de 72 células e radiação em 3,73 kWh/m²/dia

- Para sistemas que operam com controlador PWM e onde o número de módulos fotovoltaicos manteve-se o mesmo, quando se compara o sistema dimensionado pela temperatura média 19,07 °C, com a temperatura mínima de 7 °C, ocorreu um aumento na produção de energia de 0,57 % para potências de cargas e para níveis de tensão do sistema (células na cor azul), ou seja, o aumento da temperatura resulta em um aumento na produção de energia. Porém, quando se compara a temperatura média com a temperatura máxima, a produção de energia sofre uma queda de 0,57 % (células na cor verde-claro). Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.2;
- Para sistemas que operam com controlador MPPT, e onde o número de módulos fotovoltaicos manteve-se o mesmo, quando se compara o sistema dimensionado pela

temperatura média 19,07 °C, pelo sistema dimensionado com a temperatura mínima de 7 °C, houve uma queda na produção de energia de 5,52 % para as potências de cargas e níveis de tensão do sistema (células na cor laranja), ou seja, o aumento da temperatura resulta em uma queda na produção de energia em sistemas que utilizam o controlador com tecnologia MPPT. Porém, quando se compara a temperatura média com a temperatura máxima, a produção de energia sofre um acréscimo de 5,38 % (células na cor amarelo). Esse fenômeno é explicado nas seções 2.2.4 e 2.4.1.3;

- Realizando um comparativo entre sistemas que possuem as mesmas quantidades de módulos fotovoltaicos e operando na temperatura ambiente de 19,07 °C, os sistemas equipados com controladores MPPT, apresentam uma produção energética superior de 35,91 % (células na cor verde) em relação há sistemas com controladores PWM.
- Para algumas potências de cargas (células na cor vermelha) e com os sistemas operando com controlador de carga MPPT, quando se compara o sistema dimensionado com a temperatura ambiente de 19,07 °C com o de 30 °C, o sistema de 19,07 °C apresenta uma queda na produção de energia e isso se deve ao fato de que a quantidade de módulos fotovoltaicos é menor para esse sistema. Isso é explicado nos itens 2.2.4 e 2.4.1.3;
- Os sistemas que operam com controladores PWM apresentam uma quantidade de módulos fotovoltaicos superiores aos sistemas que operam com controladores MPPT, para a mesma potência de carga. Porém, mesmo com uma quantidade maior de módulos, sistemas com PWM, com exceção de alguns casos (células na cor roxo), não apresentam uma produção de energia superior aos sistemas que operam com controladores MPPT (células na cor branco). O controlador MPPT, através do seu algoritmo de rastreio, consegue extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer determinada condição atmosférica, conforme o explicado na seção 2.4.1.3;
- Em relação a quantidade de baterias, tanto para sistemas com controladores PWM quanto para MPPT, o número de bateria é mesmo, sofrendo um aumento na quantidade, para as potencias de cargas de 100 W e 500 W, quando a tensão do sistema é de 48 V. Esse aumento na quantidade de baterias ocorre porque é necessário associar baterias em série para atingir a tensão do sistema que é de 48 V.

Comparando-se os resultados obtidos com o dimensionamento de um sistema fotovoltaico *off-grid*, considerando as temperaturas ambiente mínima, média e máxima, entende-se que os cálculos efetuados para a temperatura média não apresentaram variações

significativas quando comparados com os dimensionamentos para temperaturas mínima e máxima. Portanto o uso da temperatura ambiente média deve ser considerando no dimensionamento tal qual o indicado pela literatura (seção 2.7).

3.7 COMPARATIVO DE PRODUÇÃO ENERGÉTICA ENTRE MÓDULOS DE 36 CÉLULAS, 60 CÉLULAS E 72 CÉLULAS PARA O MÊS DE PIOR RADIAÇÃO SOLAR

Em função dos resultados obtidos nas simulações das seções 3.6.1, 3.6.2 e 3.6.3, pode-se comparar a produção energética decorrente de cada tipo de módulo fotovoltaico. Os resultados foram compilados considerando os módulos de 36 células, 60 células e 72 células, bem como as seguintes condições de simulações:

- Temperatura ambiente em 19,07 °C;
- Radiação solar de 3,73 kWh/m²/dia;
- Sistemas utilizando controlador de carga PWM;
- Sistemas utilizando controlador de carga MPPT;
- Tensão do sistema em 12 V, 24 V e 48 V e;
- Potência de cargas de 100 W, 500 W, 1000 W e 2000 W.

Os resultados obtidos são apresentados nas seções subsequentes:

3.7.1 Sistema com controlador de carga PWM

O Gráfico 18 apresenta a produção energética para módulos de 36, 60 e 72 células, para sistemas com tensão em 12 V, controlador de carga PWM, considerando as potências de cargas de 100 W, 500 W, 1500 W e 2000 W.

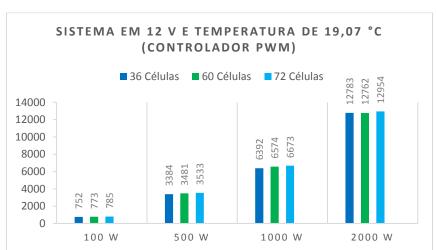


Gráfico 18 – Produção energética em 12 V (controlador PWM) para módulos de 36, 60 e 72 células

- Potência de carga em 100 W, 500 W e 1000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 4,40 % em relação ao modulo de 36 células e de 1,50 % quando comparando com o módulo fotovoltaico de 60 células;
- Potência de carga em 2000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 1,33 % em relação ao modulo de 36 células e de 1,50 % quando comparando com o módulo fotovoltaico de 60 células.

O Gráfico 19 apresenta a produção energética para módulos de 36, 60 e 72 células, para sistemas com tensão em 24 V, controlador de carga PWM, considerando as potências de cargas de 100 W, 500 W, 1500 W e 2000 W.

SISTEMA EM 24 V E TEMPERATURA DE 19,07 °C (CONTROLADOR PWM)

36 Células 60 Células 72 Células

16000
14000
12000
10000
8000
4000
2000
100 W 500 W 1000 W 2000 W

Gráfico 19 – Produção energética em 24 V (controlador PWM) para módulos de 36, 60 e 72 células

• Potência de carga em 100 W, 500 W, 1000 W e 2000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 4,40 % em relação ao modulo de 36 células e de 1,50 % quando comparando com o módulo fotovoltaico de 60 células.

O Gráfico 20 apresenta a produção energética para módulos de 36, 60 e 72 células, para sistemas com tensão em 48 V, controlador de carga PWM, considerando as potências de cargas de 100 W, 500 W, 1500 W e 2000 W.

Gráfico 20 – Produção energética em 48 V (controlador PWM) para módulos de 36, 60 e 72 células

• Potência de carga em 100 W, 500 W, 1000 W e 2000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 4,40 % em relação ao módulo de 36 células e de 1,50 % quando comparando com o módulo fotovoltaico de 60 células;

O módulo de 72 células apresentou um melhor rendimento em relação aos módulos de 36 e 60 células pelos seguintes fatos:

- Em relação ao módulo de 36 células, o módulo de 72 células apresenta uma eficiência de 16,46 %, contra uma eficiência de 15,17 % do módulo de 36 células. Outro ponto que afeta o desempenho de um módulo fotovoltaico são os seus coeficientes de temperatura e comparando esses coeficientes de cada módulo tem-se as seguintes características:
 - ✓ O coeficiente de temperatura para a potência máxima (P_{MÁX})
 é de -0,43 % / °C para o módulo de 36 células e de -0,41 % /
 °C para o módulo de 72 células. Apesar de a diferença ser pouca, o módulo de 72 células sofre uma perda menor na potência máxima em função da temperatura;
 - ✓ O coeficiente de temperatura para a tensão (V_{oc}) é de -0,34 % / °C para o módulo de 36 células, e de -0,31 % / °C para o

- módulo de 72 células. Apesar de a diferença ser pouca, o módulo de 72 células sofre uma perda menor na tensão com em função da temperatura;
- ✓ O coeficiente de temperatura para a corrente (I_{sc}) é de 0,065 % / °C para o módulo de 36 células, e de 0,053 % / °C para o módulo de 72 células. Esse coeficiente é positivo pois a corrente elétrica gerada aumenta com o aumento da temperatura. Apesar de a diferença ser pouca, este é um coeficiente em que o módulo de 72 células tem uma desvantagem em relação ao módulo de 36 células.
- Em relação ao módulo de 60 células, o módulo de 72 células apresenta uma eficiência de 16,46 %, contra uma eficiência de 16,16 %. Outro ponto que afeta o desempenho de um módulo fotovoltaico são os seus coeficientes de temperatura e comparando esses coeficientes de cada módulo tem-se que eles são idênticos, ou seja, o módulo fotovoltaico de 72 células apresenta uma produção energética superior ao módulo de 60 células somente porque sua eficiência é maior

3.7.2 Sistema com controlador carga MPPT

O Gráfico 21 apresenta a produção energética para módulos de 36, 60 e 72 células, para sistemas com tensão em 12 V, controlador de carga MPPT, considerando as potências de cargas de 100 W, 500 W, 1500 W e 2000 W.

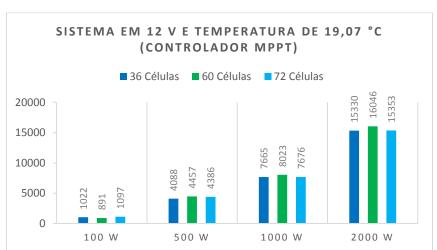
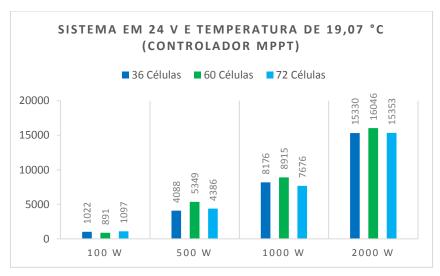
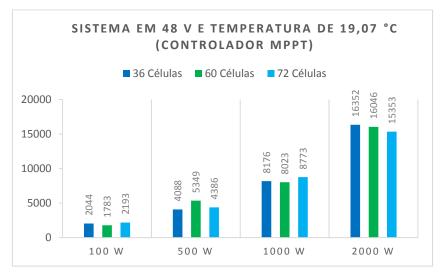



Gráfico 21 – Produção energética em 12 V (controlador de carga MPPT) para módulos de 36, 60 e 72 células

- Potência de carga em 100 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 7,30 % em relação ao módulo de 36 células e de 23,01 % quando comparando com o módulo fotovoltaico de 60 células;
- Potência de carga em 500 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 9,03 % em relação ao módulo de 36 células e de 1,62 % quando comparando com o módulo fotovoltaico de 72 células;
- Potência de carga em 1000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 4,67 % em relação ao módulo de 36 células e de 4,52 % quando comparando com o módulo fotovoltaico de 72 células e;
- Potência de carga em 2000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 4,67 % em relação ao módulo de 36 células e de 4,52 % quando comparando com o módulo fotovoltaico de 72 células.

O Gráfico 22 apresenta a produção energética para módulos de 36, 60 e 72 células, para sistemas com tensão em 24 V, controlador de carga MPPT, considerando as potências de cargas de 100 W, 500 W, 1500 W e 2000 W.

Gráfico 22 – Produção energética em 24 V (controlador de carga MPPT) para módulos de 36, 60 e 72 células


Fonte: o autor.

- Potência de carga em 100 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 7,30 % em relação ao módulo de 36 células e de 23,01 % quando comparando com o módulo fotovoltaico de 60 células;
- Potência de carga em 500 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 30,84 % em relação ao módulo de 36 células e de 21,94 % quando comparando com o módulo fotovoltaico de 72 células;
- Potência de carga em 1000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 9,03 % em relação ao módulo de 36 células e de 16,13 % quando comparando com o módulo fotovoltaico de 72 células e;

• Potência de carga em 2000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 4,67 % em relação ao modulo de 36 células e de 4,52 % quando comparando com o módulo fotovoltaico de 72 células.

O Gráfico 23 apresenta a produção energética para módulos de 36, 60 e 72 células, para sistemas com tensão em 48 V, controlador de carga MPPT, considerando as potências de cargas de 100 W, 500 W, 1500 W e 2000 W.

Gráfico 23 – Produção energética em 48 V (controlador de carga MPPT) para módulos de 36, 60 e 72 células

Fonte: o autor.

- Potência de carga em 100 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 7,30 % em relação ao módulo de 36 células e de 23,01 % quando comparando com o módulo fotovoltaico de 60 células;
- Potência de carga em 500 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 60 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 30,84 % em relação ao módulo de 36 células e de 21,94 % quando comparando com o módulo fotovoltaico de 72 células;

- Potência de carga em 1000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 72 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 7,30 % em relação ao módulo de 36 células e de 9,34 % quando comparando com o módulo fotovoltaico de 60 células e;
- Potência de carga em 2000 W: para esse sistema o módulo fotovoltaico que apresentou o melhor rendimento foi o módulo de 36 células. Comparando sua produção de energia com os demais módulos, ele apresenta um ganho de 1,91 % em relação ao módulo de 60 células e de 6,51 % quando comparando com o módulo fotovoltaico de 72 células.

Para sistemas que possuem tensão de operação em 12 V e 24 V, o módulo fotovoltaico de 60 células apresenta a maior produção energética em relação aos módulos de 36 e 72 células. Entretanto, para sistemas que possuem tensão de operação em 48 V, o módulo fotovoltaico de 72 células apresenta a maior produção energética em relação aos módulos de 36 e 60 células. Cabe salientar que sistemas que operam com controlador de carga com a tecnologia MPPT, o fator que irá determina qual módulo fotovoltaico utilizado será o custo total da solução, já que para cada nível de tensão de sistema houve um módulo que sobressaiu aos outros.

4 CONCLUSÕES E TRABALHOS FUTUROS

No presente capítulo são apresentadas as conclusões a partir dos resultados das simulações obtidos e algumas sugestões para trabalhos futuros.

4.1 CONCLUSÕES

No desenvolvimento do presente trabalho, na fundamentação teórica (Capítulo 2) foram apresentados os elementos que compõem um sistema fotovoltaico *off-grid* (módulo fotovoltaico, controladores de carga e suas tecnologias e, bateria de chumbo-ácido), bem como uma descrição de suas características funcionais.

Adicionalmente no Capítulo 2, descreveu-se uma metodologia de cálculo para o dimensionamento de um sistema fotovoltaico *off-grid*. Através dessa metodologia de cálculo foi possível estudar os impactos que a radiação solar e a temperatura ambiente causam no dimensionamento e na produção energética de um sistema fotovoltaico. Para tal foram considerados os parâmetros de temperatura ambiente, radiação solar relativos a cidade de Florianópolis/SC, bem como a quantidade de células que compõem um módulo fotovoltaico (36, 60 e 72), tipo de tecnologia do controlador de carga (PWM e MPPT) e a tensão de operação do sistema (12 V, 24 V e 48 V).

Com relação ao impacto da temperatura ambiente no dimensionamento de um sistema fotovoltaico, sistemas que possuem controlador de carga com a tecnologia PWM operando em temperatura ambiente mais elevada, terão um acréscimo na produção de energia, quando comparado com o mesmo sistema operando em temperatura ambiente mais baixa. Esse aumento na produção energética para temperaturas ambientes mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na tensão e um aumento na corrente elétrica produzida pelo módulo fotovoltaico. Com essa queda na tensão produzida pelo módulo fotovoltaico, para esta condição climática, a tensão do módulo se aproxima da tensão da bateria ou banco de baterias, e isso resulta num melhor aproveitamento da potência fornecida pelo módulo, dado que o controlador de carga PWM está chaveando tensões de módulo próximas as tensões do banco de baterias. Caso o controlador de carga PWM estivesse chaveando tensão de módulo bem acima da tensão do banco de bateria, boa parte da potência disponível pelo módulo seria desperdiçada (seção 2.4.1.2). Entretanto, caso o sistema seja dimensionando considerando no cálculo a temperatura mais elevada, pode ser que este quando operando em temperatura ambiente mais baixa não consiga produzir energia suficiente para alimentar as cargas

consideradas no dimensionamento, bem como o carregamento do banco de baterias. Esse comportamento pode ocorrer em função do dimensionamento para temperaturas mais altas resultar em uma quantia menor de módulos quando comparado com o cálculo para temperaturas menores (seções 2.6.2 e 2.4.1.2).

Com relação ao impacto da temperatura ambiente no dimensionamento de um sistema fotovoltaico, sistemas que possuem controlador de carga com a tecnologia MPPT operando em temperatura ambiente mais elevada, terão um decréscimo na produção de energia, quando comparado com o mesmo sistema operando em temperatura ambiente mais baixa. Esse decréscimo na produção energética para temperaturas ambiente mais elevadas deve-se ao fato de que o aumento na temperatura ambiente provoca uma queda na potência (módulo fotovoltaico) em relação a sua potência nominal (seções 2.2.4 e 2.4.1.3). Entretanto, caso o sistema seja dimensionando considerando no cálculo a temperatura mais baixa, pode ser que este quando operando em temperatura ambiente mais alta não consiga produzir energia suficiente para alimentar as cargas consideradas no dimensionamento, bem como o carregamento do banco de baterias. Esse comportamento pode ocorrer em função do dimensionamento para temperaturas mais baixas resultar em uma quantia menor de módulos quando comparado com o cálculo para temperaturas maiores (seções 2.6.2 e 2.4.1.3).

Comparando-se a produção energética entre as duas tecnologias de controladores de cargas, o controlador MPPT apresenta um desempenho superior ao PWM, para as mesmas condições de temperatura ambiente e mesma quantidade de módulos. Nos casos estudados, mesmo quando a quantidade de módulos é diferente, para uma mesma potência de carga, ainda assim o controlador de carga MPPT apresenta uma produção de energia superior ao controlador PWM. Isso deve-se ao fato de que o controlador MPPT possui um algoritmo de rastreio, o qual possibilita extrair sempre a máxima potência fornecido pelo módulo fotovoltaico para qualquer condição climática (seção 2.4.1.3).

Uma outra variável importante no dimensionamento de um sistema fotovoltaico *off-grid*, é a radiação solar. Considerando os resultados obtidos entende-se que o efeito da variação da radiação solar no dimensionamento de um sistema é maior que o comparado com o efeito decorrente da variação da temperatura ambiente. Nos casos estudados, um nível de radiação maior resultou em acréscimo na quantia de energia produzida pelo sistema, quando comparado com uma radiação menor. Isso decorre pelo fato de que quanto maior for a quantidade de radiação solar incidente sobre um módulo fotovoltaico, maior será a quantidade de corrente produzida pelo mesmo, resultando em uma maior produção energética.

Quando um sistema fotovoltaico é dimensionado para uma radiação solar maior, isso resulta em uma quantidade menor de módulos fotovoltaicos, quando comparado com o dimensionamento considerando uma radiação solar menor, ou seja, é necessária uma quantidade de módulos menor para se produzir a mesma ou uma maior quantidade de energia. Por isso, o dimensionamento do sistema fotovoltaico deverá ser realizado pelo mês que apresenta o pior nível de radiação solar. Caso o sistema seja dimensionado pelo mês que em acontece o nível mais alto, a quantidade de módulos que compõem o painel solar poderá ser menor e durante o período do ano em que o nível da radiação solar for menor, esse painel pode não produzir energia suficiente para alimentar as cargas e banco de baterias.

Com relação a quantidade de células que compõem um módulo fotovoltaico e o seu impacto na produção energética, para sistemas que trabalham com controlador PWM, o módulo que apresentou a melhor produção energética foi o de 72 células, independente da tensão do sistema e da potência de carga. Entretanto, esse fator não deve ser o único a ser levando em consideração no dimensionamento do sistema, haja visto que o custo final da solução normalmente é um fator preponderante e depende dos custos dos demais componentes que compõe o sistema (cabos, estrutura de fixação, controlador de carga, baterias e dispositivos de proteção).

Para sistemas que trabalham com controlador MPPT, o módulo fotovoltaico de 60 células apresenta a maior produção energética em relação aos módulos de 36 e 72 células, considerando sistemas que possuem os níveis de tensão em 12 V e 24 V. Entretanto, para sistemas que possuem tensão de operação em 48 V, o módulo fotovoltaico de 72 células apresenta a maior produção energética em relação aos módulos de 36 e 60 células. Esse fator não deve ser o único a ser levando em consideração no dimensionamento do sistema, haja visto que o custo final da solução normalmente é um fator preponderante e depende dos custos dos demais componentes que compõe o sistema (cabos, estrutura de fixação, controlador de carga, baterias e dispositivos de proteção).

Comparando-se os resultados obtidos com o dimensionamento de um sistema fotovoltaico off-grid, considerando as temperaturas ambiente mínima, média e máxima para o mês de junho (menor nível de radiação solar para a cidade de Florianópolis/SC), entende-se que os cálculos efetuados para a temperatura média não apresentaram variações significativas quando comparados com os dimensionamentos para temperaturas mínima e máxima. Portanto o uso da temperatura ambiente média deve ser considerando no dimensionamento tal qual o indicado pela literatura (seção 2.7),evitar subdimensionamento para 0 sobredimensionamento

Em função dos resultados obtidos observa-se que a radiação solar e a temperatura ambiente exercem grandes influências no dimensionamento de um sistema fotovoltaico *off-grid*. Caso essas variáveis não sejam consideradas corretamente, ou os seus efeitos mal interpretados, o dimensionamento e o desempenho do sistema pode ser comprometido, pois pode-se incorrer em subdimensionamento ou sobredimensionamento do sistema. Quanto ao que se refere a escolha da tecnologia do controlador a ser considerado, pode-se mencionar que o controlador MPPT, em geral, apresenta um desempenho superior ao controlador PWM, mas a decisão de qual tecnologia de controlador utilizar, deve considerar o custo de cada um, bem como dos demais componentes do sistema fotovoltaico.

4.2 TRABALHOS FUTUROS

A metodologia de cálculo adotada para realizar o estudo proposto no presente trabalho considera apenas o dimensionamento de sistemas fotovoltaicos que fornecem exclusivamente tensão contínua (Vcc). Como sugestão de trabalhos futuros, pode-se propor a verificação do que é necessário para o dimensionamento de sistemas fotovoltaicos *off-grid* considerando tensão alternada (Vca).

Estudar o efeito do sombreamento no dimensionamento de um sistema fotovoltaico *off-grid*.

Adicionalmente, outra sugestão, é verificar o efeito da radiação solar e da temperatura ambiente no dimensionamento de um sistema fotovoltaico *on-grid*.

REFERÊNCIAS

VILLALVA, Marcelo Gradella. **Energia solar fotovoltaica: conceitos e aplicações.** 2ª ed. rev. e atual. São Paulo: Érica, 2015.

LOPEZ, Ricardo Aldabó. **Energia solar para produção de eletricidade.** São Paulo: Artiliber Editora, 2012.

ZILLES, Roberto. **Sistemas fotovoltaicos conectados à rede elétrica.** São Paulo: Oficina de Textos, 2012.

KALOGIROU, Soteris. **Engenharia de energia solar: processos e sistemas.** 2ª. Ed. Rio de Janeiro: Elsevier, 2016.

Centro de Referência para as Energias Solar e Eólica Sérgio de S. Brito - CRESESB. **Manual de Engenharia para Sistemas Fotovoltaicos**. Rio de Janeiro: Cepel, 2014.

TREVELIN, Felipe Camargo. Estudo comparativo entre métodos de rastreamento solar aplicados a sistemas fotovoltaicos. São Paulo: Escola de Engenharia de São Carlos da Universidade de São Paulo, 2014.

CONFESSOR, Sâmya Lorena de Medeiros. **Análise comparativa de controladores MPPT aplicados a um sistema fotovoltaico.** Dissertação de Mestrado. Mossoró: Universidade Federal Rural do Semi –Árido, 2014.

Morningstar. **Traditional PWM vs Morningstar's TrakStarTM MPPT Technology.** Disponível em: http://www.morningstarcorp.com/wp-content/uploads/2014/02/Morningstar-Corporation-Traditional-PWM-vs-TrakStar-MPPT-Whitepaper-March-2015.pdf>. Accesso em: 24 set. 2017.

WENDLING JÚNIOR, José Marcelo de Assis. **Proposta de controlador de carga com MPPT utilizando LabVIEW.** Guaratinguetá: Trabalho de Graduação em Engenharia Elétrica — Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2015.

LAZZARIN, Telles Brunelli. **Estudo e Implementação de um carregador de baterias com uma técnica de avaliação de sua vida útil.** Dissertação de Mestrado. Florianópolis: Universidade Federal de Santa Catarina, 2006.

CARNEIRO, Joaquim. **Dimensionamento de sistemas fotovoltaicos.** Braga, Portugal: Universidade do Minho, 2009.

Portal Solar. Passo a Passo da Fabricação do Painel Solar. Disponível em:

https://www.portalsolar.com.br/passo-a-passo-da-fabricacao-do-painel-solar.html>. Acesso em: 01 set. 2017.

Texas Instruments. **Datasheet circuito integrado bq2031**. Disponível em:

http://www.ti.com/lit/ds/symlink/bq2031.pdf. Acessado em: 26 ago. 2017.

Canadian Solar. Datasheet Módulo Fotovoltaico CS6C-150P. Disponível em:

http://deltavolt.pe/documentos/CS6C-P-Off-Grid-Module.pdf>. Acesso em: 14 set. 2017.

Canadian Solar. **Datasheet Módulo Fotovoltaico CS6P-260P.** Disponível em:

CS6PPSD_SmartDC-v5.4en.pdf>. Acesso em: 14 set. 2017.

Canadian Solar. **Datasheet Módulo Fotovoltaico CS6U-320P.** Disponível em:

https://www.canadiansolar.com/downloads/datasheets/v5.53/na/canadian_solar-datasheet-maxpower-CS6U-P-v5.52na.pdf. Acesso em: 14 set. 2017.

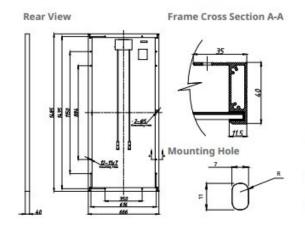
Beijing Epsolar Technology. **Datasheet Controlador de Carga PWM VS4548BN.** Disponível em: http://www.epsolarpv.com/en/uploads/news/201408/1407810877568156.pdf. Acesso em: 14 set. 2017.

Beijing Epsolar Technology. **Datasheet Controlador de Carga MPPT IT4415ND.** Disponível em: http://www.epsolarpv.com/en/uploads/news/201701/1483945096843443.pdf>. Acesso em: 14 set. 2017.

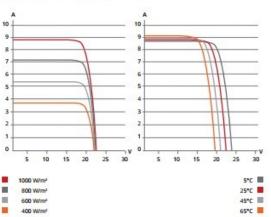
Johnson Controls. Manual Técnico Bateria estacionária Freedom®. Disponível em:

http://www.logik.com.br/download/ManualTecnicoBateriasFreedom.pdf>. Acesso em: 15 set. 2017.

Centro de Referência para as Energias Solar e Eólica Sérgio de S. Brito - CRESESB. **SunData.** Disponível em:


">. Acesso em: 13 out. 2017.

Instituto Nacional de Meteorologia - INMET. **Instituto Nacional de Meteorologia - INMET.** Disponível em: http://www.inmet.gov.br/sim/gera graficos.php>. Acesso em: 14 out. 2017.


ANEXOS

ANEXO A – Datasheet do módulo fotovoltaico Canadian Solar CS6C-150P

MODULE / ENGINEERING DRAWING (mm)

CS6C-150P / I-V CURVES

ELECTRICAL DATA | STC*

Electrical Data CS6C	145P	150P
Nominal Max. Power (Pmax)	145 W	150 W
Opt. Operating Voltage (Vmp)	17.9 V	18.1 V
Opt. Operating Current (Imp)	8.09 A	8.30 A
Open Circuit Voltage (Voc)	22.2 V	22.3 V
Short Circuit Current (Isc)	8.65 A	8.87 A
Module Efficiency	14.66%	15.17%
Operating Temperature	-40°C ~ +	85°C
Max. System Voltage	1000 V (II	EC) or 1000 V (UL)
Module Fire Performance	TYPE 1 (U	L 1703) or
	CLASS C	IEC61730)
Max. Series Fuse Rating	15 A	- 100
Application Classification	Class A	
Power Tolerance	±3%	

 ^{*} Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.

ELECTRICAL DATA | NOCT*

Electrical Data CS6C	145P	150P	
Nominal Max. Power (Pmax)	105 W	109 W	
Opt. Operating Voltage (Vmp)	16.3 V	16.5 V	
Opt. Operating Current (Imp)	6.44 A	6.59 A	
Open Circuit Voltage (Voc)	20.4 V	20.5 V	
Short Circuit Current (Isc)	7.01 A	7.19 A	

^{*} Under Nominal Operating Cell Temperature (NOCT), irradiance of 800 W/m², spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

PERFORMANCE AT LOW IRRADIANCE

Industry leading performance at low irradiation, +95.5 % module efficiency from an irradiance of 1000 W/m² to 200 W/m² (AM 1.5, 25°C).

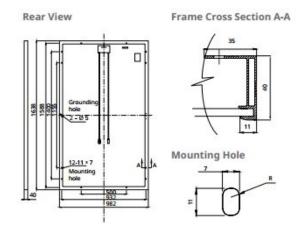
The specification and key features described in this Datasheet may deviate slightly and are not guaranteed. Due to on-going innovation, research and product enhancement, Canadian Solar Inc. reserves the right to make any adjustment to the information described herein at any time without notice. Please always obtain the most recent version of the datasheet which shall be duly incorporated into the binding contract made by the parties governing all transactions related to the purchase and sale of the products described herein.

Caution: For professional use only. The installation and handling of PV modules requires professional skills and should only be performed by qualified professionals. Please read the safety and installation instructions before using the modules.

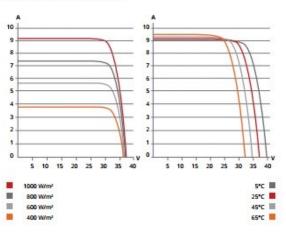
MODULE | MECHANICAL DATA

Specification	Data
Cell Type	Poly-crystalline, 6 inch
Cell Arrangement	36 (4 × 9)
Dimensions	1485 x 666 x 40mm (58.4 x 26.2x1.57in)
Weight	12 kg (26.5 lbs)
Front Cover	3.2 mm tempered glass
Frame Material	Anodized aluminium alloy
J-BOX	IP67, 2 diodes
Cable	4 mm ² (IEC) or 4 mm ² & 12 AWG
	1000 V (UL), 950 mm (37.4 in)
Connectors	MC4 or MC4 comparable
Stand. Packaging	36 pcs
Module Pieces per Container	792 pcs (40')

TEMPERATURE CHARACTERISTICS


Specification	Data
Temperature Coefficient (Pmax)	-0.43% / °C
Temperature Coefficient (Voc)	-0.34%/°C
Temperature Coefficient (Isc)	0.065%/°C
Nominal Operating Cell Temperature	45±2°C

PARTNER SECTION



ANEXO B – Datasheet do módulo fotovoltaico Canadian Solar CS6P-260P

MODULE / ENGINEERING DRAWING (mm)

CS6P-260P / I-V CURVES

ELECTRICAL DATA | STC*

Electrical Data CS6P	260P	265P
Nominal Max. Power (Pmax)	260 W	265 W
Opt. Operating Voltage (Vmp)	30.4 V	30.6 V
Opt. Operating Current (Imp)	8.56 A	8.66 A
Open Circuit Voltage (Voc)	37.5 V	37.7 V
Short Circuit Current (Isc)	9.12 A	9.23 A
Module Efficiency	16.16%	16.47%
Operating Temperature	-40°C ~ +	85°C
Max. System Voltage	1000 V (I	EC) or 1000 V (UL)
Module Fire Performance	TYPE 1 (U	IL 1703) or
	CLASS C	(IEC 61730)
Max. Series Fuse Rating	15 A	
Application Classification	Class A	
Power Tolerance	0~+5W	72

 $^{^{\}star}$ Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.

ELECTRICAL DATA | NOCT*

Electrical Data CS6P	260P	265P
Nominal Max. Power (Pmax)	189 W	192 W
Opt. Operating Voltage (Vmp)	27.7 V	27.9 V
Opt. Operating Current (Imp)	6.80 A	6.88 A
Open Circuit Voltage (Voc)	34.5 V	34.7 V
Short Circuit Current (Isc)	7.39 A	7.48 A

 ^{*} Under Nominal Operating Cell Temperature (NOCT), irradiance of 800 W/m², spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

PERFORMANCE AT LOW IRRADIANCE

Industry leading performance at low irradiation, average 96.5% relative efficiency from an irradiance of 1000 W/m² to 200 W/m² (AM 1.5, 25°C).

The specification and key features described in this datasheet may deviate slightly and are not guaranteed. Due to on-going innovation, research and product enhancement, Canadian Solar Inc. reserves the right to make any adjustment to the information described herein at any time without notice. Please always obtain the most recent version of the datasheet which shall be duly incorporated into the binding contract made by the parties governing all transactions related to the purchase and sale of the products described herein.

Caution: For professional use only. The installation and handling of PV modules requires professional skills and should only be performed by qualified professionals. Please read the safety and installation instructions before using the modules.

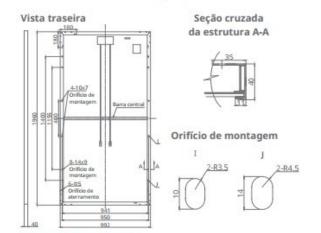
MODULE | MECHANICAL DATA

Specification	Data
Cell Type	Poly-crystalline, 6 inch
Cell Arrangement	60 (6×10)
Dimensions	1638×982×40 mm (64.5×38.7×1.57 in)
Weight	18 kg (39.7 lbs)
Front Cover	3.2 mm tempered glass
Frame Material	Anodized aluminium alloy
J-Box	IP67, 3 diodes
Cable	4 mm ² (IEC) or 4 mm ² & 12 AWG
	1000 V (UL), 1000 mm (39.4 in)
	(650 mm (25.6 in) is optional)
Connectors	Friends PV2a (IEC),
	Friends PV2b (IEC / UL)
Standard	26 pieces, 515 kg (1135.4 lbs)
Packaging	(quantity & weight per pallet)
Module Pieces	
per Container	728 pieces (40' HQ)

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.41% /°C
Temperature Coefficient (Voc)	-0.31% /°C
Temperature Coefficient (Isc)	0.053% /°C
Nominal Operating Cell Temperature	45±2°C

PARTNER SECTION



Scan this QR-code to discover solar projects built with this module

ANEXO C – Datasheet do módulo fotovoltaico Canadian Solar CS6U-320P

DESENHOS DE ENGENHARIA (mm)

DADOS ELÉTRICOS/STC*

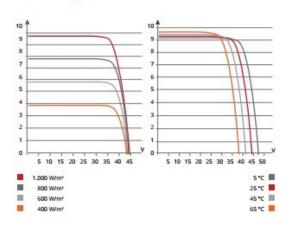
CS6U	315P	320P	325P	330P
Potência nominal máx. (Pmáx)	315 W	320 W	325 W	330 W
Tensão operacional ideal (Vmp)	36,6 V	36,8 V	37,0 V	37,2 V
Corrente operacional ideal (Imp)	8,61 A	8,69 A	8,78 A	8,88 A
Tensão de circuito aberto (Voc)	45,1 V	45,3 V	45,5 V	45,6 V
Corrente de curto-circuito (Isc)	9,18 A	9,26 A	9,34 A	9,45 A
Eficiência do módulo	16,20%	16,46%	16,72%	16,97%
Temperatura operacional	-40 °C ~	+85 °C	1	0.714.0070
Tensão máxima do sistema	1.000 V	(IEC) ou	1.000 V	/ (UL)
Desempenho do módulo	TIPO 1	(UL 1703	3) ou	
contra incêndio	CLASSE	C (IEC 6	1730)	
Classificação máx.	15 A			
de fusíveis da série				
Classificação da aplicação	Classe /	A		
Tolerância de potência	0~+5	W		

^{*} Sob condições de teste padrão (STC) de irradiação de 1.000 W/m², espectro AM de 1,5 e temperatura de célula de 25 °C.

DADOS ELÉTRICOS/NOCT*

CS6U	315P	320P	325P	330P
Potência nominal máx. (Pmáx)	228 W	232 W	236 W	239 W
Tensão operacional ideal (Vmp)	33,4 V	33,6 V	33,7 V	33,9 V
Corrente operacional ideal (Imp)	6,84 A	6,91 A	6,98 A	7,05 A
Tensão de circuito aberto (Voc)	41,5 V	41,6 V	41,8 V	41,9 V
Corrente de curto-circuito (Isc)	7,44 A	7,50 A	7,57 A	7,66 A

^{*} Sob temperatura operacional normal da célula (NOCT), irradiação de 800 W/m², espectro AM de 1,5, temperatura ambiente de 20 °C, velocidade do vento de 1 m/s.


DESEMPENHO A BAIXA IRRADIAÇÃO

Desempenho excepcional em ambientes de baixa irradiação, eficiência média relativa de 96% a partir de uma irradiação de 1.000 W/m² a 200 W/m² (AM 1,5, 25 °C).

A especificação e os principais recursos descritos nesta ficha técnica podem ser um pouco diferentes e não estão garantidos. Devido à continua inovação, pesquisa e melhoria de produtos, a Canadian Solar Inc. reserva-se o direito de fazer modificações nas informações descritas neste documento a qualquer momento e sem aviso prévio. Sempre adquira a versão mais recente da ficha técnica, que deve ser devidamente incorporada ao contrato legal firmado pelas partes regulamentando todas as transações relativas à compra e à venda dos produtos aqui descritos.

Atenção: Apenas para uso profissional. A instalação e o manuseio de módulos fotovoltaicos requerem habilidades profissionais. Apenas profissionais qualificados devem realizá-los. Leia as instruções de segurança e instalação antes de usar os módulos.

CS6U-320P | CURVAS I-V

DADOS MECÂNICOS

Especificação	Dados
Tipo de célula	Policristalino, 6 polegadas
Organização das células	72 (6 × 12)
Dimensões	1.960 × 992 × 40 mm
	(77,2 × 39,1× 1,57 pol.)
Peso	22,4 kg (49,4 lb)
Tampa dianteira	Vidro temperado de 3,2 mm
Material da estrutura	Liga de alumínio anodizado
Caixa de derivação	IP67, 3 diodos
Cabo	4 mm² (IEC) ou 4 mm² e 12 AWG
	1.000 V (UL), 1.160 mm
	(45,7 pol.)
Conectores	T4 (IEC/UL)
Por palete	26 peças
Por contêiner (40' HQ)	572 peças

CARACTERÍSTICAS DE TEMPERATURA

Especificação	Dados
Coeficiente de temperatura (Pmáx)	-0,41%/°C
Coeficiente de temperatura (Voc)	-0,31%/°C
Coeficiente de temperatura (Isc)	0,053%/°C
Temperatura operacional nominal da célula	45±2 °C

SEÇÃO DO PARCEIRO

CANADIAN SOLAR INC.

Julho de 2016. Todos os direitos reservados. Ficha técnica do produto do módulo fotovoltaico V5.51P1_NA

ANEXO D – *Datasheet* do Controlador de carga PWM VS4548BN

Technical specifications

Model	V04004PW	VS2024BN	VS3024BN	VS4524BN	VS6024BN									
Model	VS1024BN	VS2048BN	VS3048BN	VS4548BN	VS6048BN									
	12/24V auto	VS**24BN: 12/24V auto work												
Nominal system voltage	work	VS**48BN: 12/24/36/48V auto work												
Rated battery current	10A	20A	30A	45A	60A									
Rated load current	10A	20A	30A	45A	60A									
Max. battery voltage		VS**24BN: 32V, VS**48BN:64V												
Equalize charging voltage	Sealed: 14.6V, Flooded: 14.8V, User-defined: 9~17V													
Boost charging voltage	Gel: 1	4.2V, Sealed: 1	4.6V, Flooded: 1-	4.8V, User-defined:	9~17V									
Float charging voltage		Gel /Sealed /Fl	ooded: 13.8V, U	ser-defined: 9~17V										
Low voltage reconnect voltage		Gel /Sealed /Fl	ooded: 12.6V, U	ser-defined: 9~17V										
Low voltage disconnect voltage		Gel /Sealed /F	looded: 11.1V, Us	ser-defined: 9~17V										
Self-consumption		≤15mA(12V); ≤1	0mA(24V); ≤9mA	(36V); ≤8mA(48V)										
Grounding			Common negat	ive										
Temp. compensation			-3mV/℃/2V											
Communication		F	8S485 / RJ45 inte	rface										

Model	VS2048BN	VS3048BN	VS4548BN	VS6048BN		
Overall dimension	200x103x58mm	201x109x59mm	205x119x67mm	205x174x64mm		
Terminals	16mm ²	35mm²	35mm ²	35mm²		
Net weight	0.7kg	0.8kg	1.2kg	1.6kg		
Enclosure		IP3	0			

ANEXO E – *Datasheet* do controlador de carga MPPT IT4415ND

Technical specifications

Model	IT3415ND	IT4415ND	IT6415ND								
Nominal system voltage	12\	//24V /36V/48V auto w	ork								
Rated battery current	30A	45A	60A								
Rated load current	30A	45A	60A								
Max. PV open circuit voltage	150V										
Voltage range	8~72V										
	400W (12V)	600W (12V)	800W (12V)								
M- DV:	800W (24V)	1200W (24V)	1600W (24V 2400W (36V								
Max. PV input power	1200W (36V)	1800W (36V)									
	1600W (48V)	2400W (48V)	3200W (48V)								
Self-consumption	1.4~2.2W										
Equalize charging voltage	Sealed: 14.6V, Flooded: 14.8V, User-defined: 9~17V										
Boost charging voltage	Gel: 14.2V,	Sealed: 14.4V, Flood User-defined: 9~17V	ded: 14.6V,								
Float charging voltage	Gel /Sealed /F	looded: 13.8V, User-d	efined: 9~17V								
Low voltage reconnect voltage	Gel /Sealed /F	looded: 12.6V, User-d	efined: 9~17V								
Low voltage disconnect voltage	Gel /Sealed /F	looded: 11.1V, User-de	efined: 9~17V								
Grounding		Common negative									
Tracking efficiency	99%										
Peak conversion efficiency		98%									

Mechanical	IT3415ND	IT4415ND	IT6415ND
Overall	358x219x102mm	382x231x107mm	440x231x110mm
Mounting	339x195mm	362x205mm	420x205mm
Terminal	25mm ²	35mm ²	35mm²
Net Weight	3.7kg	4.6kg	5.9kg

ANEXO F – Datasheet da bateria Estacionária Freedom DF2000

Principais características elétricas

Mod	delos	DF300	DF500	DF700	DF1000	DF2000	DF2500	DF3000	DF4001
Capacidade @25°C (Ah)	10 h	24	30	41	54	94	130	156	200
	20 h	26	36	45	60	105	150	170	220
	100 h	30	40	50	70	115	165	185	240
Dimensões	Comprimento	175	175	210	244	330	511	511	525
(mm)	Largura	175	175	175	175	172	213	213	275
	Altura	175	175	175	175	240	230	230	250
Pes	o (Kg)	8,8	9,7	12,5	14,7	27,1	44,6	48,3	60,3

Correntes de descarga (A) em diferentes regimes a 25°C (tensão final 10,5V)

Modelo								H	DRAS								MINUTOS		
Bateria	100hs	20hs	10hs	9hs	8hs	7hs	6hs	5hs	4,5hs	4hs	3,5hs	3hs	2,5hs	2hs	1,5hs	1h	45'	30'	15'
DF300	0,3	1,3	2,4	2,6	2,9	3,3	3,8	4,4	4,9	5,4	6,0	7,0	8,2	10,0	12,8	18,0	21,0	25,0	40,0
DF500	0,4	1,8	3,0	3,3	3,7	4,2	4,9	5,8	6,2	6,8	7,6	8,6	9,9	12,0	15,0	20,0	25,3	33,0	52,0
DF700	0,5	2,3	4,1	4,5	5,0	5,6	6,5	7,5	8,2	9,2	10,0	11,5	13,6	16,3	21,0	27,0	32,0	43,0	65,0
DF1000	0,7	3,0	5,4	5,8	6,4	7,3	8,2	9,8	10,5	11,5	12,5	14,5	17,0	19,0	25,2	35,0	42,5	55,0	84,0
DF2000	1,2	5,3	9,4	10,2	11,5	13,0	14,5	17,0	18,4	20,3	22,6	25,0	29,5	34,5	44,0	60,0	75,0	96,0	150,
DF2500	1,7	7,5	13,0	14,4	16,2	18,0	20,0	23,0	25,0	28,0	31,0	34,0	40,0	47,0	58,0	81,0	99,0	130,0	200,
DF3000	1,9	8,5	15,6	17,0	19,0	21,4	24,7	28,0	30,0	33,0	36,0	41,0	48,0	57,0	72,0	95,0	112,0	152,0	231,
DF4001	2,4	11,0	20,0	21,5	24,0	26,5	30,0	35,0	38,0	41,5	46,0	52,0	60,0	72,0	90,0	120,0	145,0	191,0	290,

Capacidade em ampère-hora (Ah) a 25°C em diferentes regimes de descarga (tensão final 10,5V)

Modelo								HOF	RAS								MINUTOS			
Bateria	100hs	20hs	10hs	9hs	8hs	7hs	6hs	5hs	4,5hs	4hs	3,5hs	3hs	2,5hs	2hs	1,5hs	1h	45'	30'	15'	
DF300	30,0	26,0	24,0	23,8	23,5	23,1	22,8	22,0	21,9	21,6	21,0	21,0	20,5	20,0	19,2	18,0	15,8	12,5	10,0	
DF500	40,0	36,0	30,0	29,9	29,8	29,7	29,4	28,8	27,7	27,0	26,6	25,8	24,8	24,0	22,5	20,0	19,0	16,5	13,0	
DF700	50,0	45,0	41,0	40,5	40,0	39,5	39,2	37,5	37,1	36,8	35,0	34,5	34,0	32,5	31,5	27,0	24,0	21,5	16,3	
DF1000	70,0	60,0	54,0	51,8	51,6	51,1	49,2	49,0	47,3	46,0	43,8	43,5	42,5	38,0	37,8	35,0	31,9	27,5	21,0	
DF2000	115,0	105,0	94,0	92,0	91,8	91,0	87,0	85,0	82,8	81,2	79,1	75,0	73,8	69,0	66,0	60,0	56,3	48,0	37,5	
DF2500	165,0	150,0	130,0	129,8	129,6	126,0	120,0	115,0	112,5	112,0	108,5	102,0	100,0	94,0	87,0	81,0	74,3	65,0	50,0	
DF3000	185,0	170,0	156,0	153,0	152,0	150,0	148,2	140,0	135,0	132,0	126,0	123,0	120,0	114,0	108,0	95,0	84,0	76,0	57,8	
DF4001	240,0	220,0	200,0	193,5	192,0	185,5	180,0	175,0	171,0	166,0	161,0	156,0	150,0	144,0	135,0	120,0	108,8	95,5	72,0	

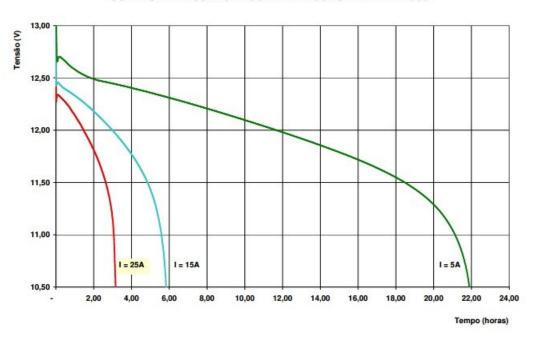
Watts-horas (Wh) a 25°C (tensão final 10,5V)

		()		- (,-	.,										
Modelo								HC	RAS								MINUTO		
Modelo	100hs	20hs	10hs	9hs	8hs	7hs	6hs	5hs	4,5hs	4hs	3,5hs	3hs	2,5hs	2hs	1,5hs	1h	45'	30'	15'
DF300	3	16	25	28	32	35	37	45	46	47	50	65	68	75	90	125	145	175	300
DF500	5	22	36	40	43	48	53	65	67	70	75	92	95	107	130	167	200	250	510
DF700	6	29	45	51	55	62	68	84	82	85	94	118	120	135	165	210	250	300	550
DF1000	7	36	63	69	76	84	96	111	121	133	148	168	194	233	248	257	278	487	712
DF2000	13	65	104	118	126	139	160	188	192	200	217	270	268	310	372	490	582	694	1200
DF2500	19	93	155	170	181	202	224	269	273	287	311	378	381	441	581	698	817	989	1638
DF3000	25	110	179	197	217	238	251	306	311	333	382	437	448	517	637	798	958	1148	1917
DF4001	28	139	217	240	264	285	315	376	381	406	441	536	547	643	768	995	1185	1424	2374

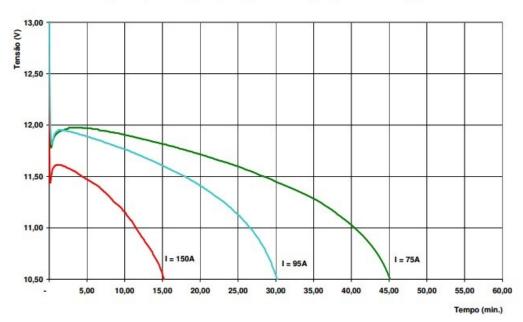
Instruções de carga

Tensão de flutuação: 13,2 a 13,8 V @ 25°C Tensão de equalização e carga: 14,4 a 15,5 V @ 25°C

Compensação de temperatura


Para cada 1°C acima de 25°C, subtrair 0,033 V e para cada 1°C abaixo de 25°C, adicionar 0,033 V.

Curvas características de descarga


Este item mostra as curvas características de descarga das baterias estacionárias Freedom® em diferentes valores de corrente:

DF2000:

CURVAS DE DESCARGA - CORRENTE CONSTANTE - DF2000

CURVAS DE DESCARGA - CORRENTE CONSTANTE - DF2000

