

UNIVERSIDADE DO SUL DE SANTA CATARINA LUKAS EVALDT SOUZA DA SILVA

ESTUDO TÉCNICO DAS VIAS INTERNAS DO PORTO DE IMBITUBA: COMPOSIÇÃO DO TRÁFEGO, DIMENSIONAMENTO E AVALIAÇÃO ESTRUTURAL

LUKAS EVALDT SOUZA DA SILVA

ESTUDO TÉCNICO DAS VIAS INTERNAS DO PORTO DE IMBITUBA: COMPOSIÇÃO DO TRÁFEGO, DIMENSIONAMENTO E AVALIAÇÃO ESTRUTURAL

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia Civil da Universidade do Sul de Santa Catarina como requisito parcial à obtenção do título de Engenheiro Civil.

Orientador: Prof. Eng. Ismael Medeiros, Esp.

Tubarão

LUKAS EVALDT SOUZA DA SILVA

ESTUDO TÉCNICO DAS VIAS INTERNAS DO PORTO DE IMBITUBA: COMPOSIÇÃO DO TRÁFEGO, DIMENSIONAMENTO E AVALIAÇÃO ESTRUTURAL

Este Trabalho de Conclusão de Curso foi julgado adequado à obtenção do título de Engenheiro Civil e aprovado em sua forma final pelo Curso de Engenharia Civil da Universidade do Sul de Santa Catarina.

Tubarão, 22 de junho de 2021.

Assinado de forma digital por ISMAEL MEDEIROS:02876716909

Dados: 2021.07.08 14:16:50 -03'00'

Prof. Eng. Ismael Medeiros, Esp. (Orientador) Universidade do Sul de Santa Catarina

Prof. Gercino Preve, Esp. Universidade do Sul de Santa Catarina

Eng. Maurício Tonial, Esp. SCPar Porto de Imbituba

Dedico este trabalho aos meus pais Norton José Evaldt da Silva e Neyva Daniella Souza da Silva, gratidão eterna por me guiar nessa jornada. Muito obrigado pelo amor e dedicação, esta conquista é de todos nós.

AGRADECIMENTOS

Primeiramente a Deus, por abençoar com saúde, coragem e paz, me guiando pelos caminhos oferecendo suporte para atravessar as provações.

Ao meu pai Norton José Evaldt da Silva e minha mãe Neyva Daniella Souza da Silva, por acreditar em meu potencial e investirem os frutos dos seus esforços em meu bem-estar e desenvolvimento pessoal. Agradeço por me abençoar com a sabedoria necessária para vencer os desafios da vida.

A minha noiva Gabriela Figueredo pelo apoio e parceria durante todo o processo.

Aos amigos e familiares presentes neste momento importante.

Aos meus colegas de profissão e amigos Eng. Lucas Vieira da Rosa e Eng. Matheus Amorim de Souza pelo incentivo e companheirismo de sempre.

A toda equipe do Porto de Imbituba, por oferecer toda a estrutura necessária para o crescimento profissional, em especial ao orientador de estágio Eng. Maurício Tonial.

Ao orientador de TCC Prof. Ismael Medeiros, por guiar o caminho, apontando as ferramentas necessárias para a conclusão e todos os outros professores e profissionais que fazem o curso de Engenharia Civil da UNISUL.

RESUMO

Diante do crescimento expressivo do Porto de Imbituba ao longo dos anos é inevitável o

desgaste das estruturas de apoio devido à movimentação ininterrupta das operações portuárias.

A necessidade de um maior tráfego de veículos pesados a fim de escoar as cargas operadas pelo

porto gera um desgaste da pavimentação existente, fato que demanda investimentos recorrentes

para preservar o desempenho satisfatório das vias internas. Baseado nesse cenário, este trabalho

busca realizar o levantamento das condições atuais do pavimento asfáltico em uso na área

portuária, determinando sua vida útil restante. Além disso, é avaliada a compatibilidade do

revestimento atual com as condições de desgaste severo em que o asfalto é solicitado, buscando

alternativas compatíveis com o cenário detalhado. Desta forma, é entendido que os pavimentos

rígidos se mostram como uma alternativa mais propícia a resistir as solicitações do tráfego

dimensionado. Como alternativa construtiva, o pavimento de concreto whitetopping se mostra

como uma solução viável economicamente, pois aproveita da estrutura existente fazendo a

função de reforço estrutural, fornecendo capacidade de suporte a operação atual e para a

previsão de crescimento de tráfego para os próximo vinte anos.

Palavras-chave: Pavimentação. Manutenção. Investimentos.

ABSTRACT

Given the significant growth of the Port of Imbituba over the years, the wear of support

structures is inevitable due to the uninterrupted movement of port operations. The need for

greater heavy vehicle traffic in order to transport all loads operated by the port causes wear of

the existing pavement, a fact that requires significant investments to preserve the satisfactory

performance of the internal roads. Based on this scenario, this work seeks to survey the current

conditions of the asphalt pavement in use in the port area, determining its remaining useful life.

In addition, the compatibility of the current asphalt layer against the severe wear conditions in

which the asphalt is requested is evaluated, seeking alternatives compatible with the detailed

scenario. Therefore, it is understood that rigid pavements are a more favorable alternative to

resist the demands of the dimensioned traffic. As a constructive alternative, the whitetopping

concrete pavement proves to be an economically viable solution, as it takes advantage of the

existing structure, performing the function of structural reinforcement, providing capacity to

support the current operation and to forecast traffic growth for the next twenty years.

Keywords: Paviment. Maintenance. Investiments.

LISTA DE ILUSTRAÇÕES

Figura 1 - Planos de planejamento do setor portuário	28
Figura 2 - Seção transversal de um pavimento flexível	29
Figura 3 - Seção transversal de um pavimento rígido	30
Figura 4 - Corpo-de-prova extraído de pista mostrando a composição do revestimento	
sfálticosfáltico	33
Figura 5 - Execução de camada de reforço (recapeamento) de CBUQ no Porto de Imbituba.	33
Figura 6 - Fluxograma apresentando a metodologia adotada	34
Figura 7 - Efeito da carga sobre pavimento	41
Figura 8 - Fase da vida de um pavimento	44
Figura 9 - Deflexão admissível	45

LISTA DE GRÁFICOS

Gráfico 1 - Cargas movimentadas no ano de 2019 (milhões de toneladas)	20
Gráfico 2 - Matriz de transporte de cargas no mundo.	23
Gráfico 3 - Ranking dos principais portos organizados	25
Gráfico 4 - Ranking dos principais portos privados	25
Gráfico 5 - Comparativo anual da movimentação de cargas no Porto de Imbituba (milhões	de
toneladas	36
Gráfico 6 - Entrada de caminhões no ano de 2019	38
Gráfico 7 - Entrada de caminhões no ano de 2020	39
Gráfico 8 - Correlação entre o coeficiente de recalque e deflexão Benkelman	51
Gráfico 9 - Análise de fadiga - número de repetições admissíveis	57
Gráfico 10 - Análise de erosão - número de repetições (sem acostamento de concreto)	57

LISTA DE TABELAS

Tabela 1 - Vantagens e desvantagens dos modais de transporte	22
Tabela 2 - Relação veículos x movimentação de cargas no ano de 2019	37
Tabela 3 - Relação veículos x movimentação de cargas no ano de 2020	38
Tabela 4 - Valores para composição do Número N	42
Tabela 5 - Cálculo Número N (AASHTO)	42
Tabela 6 - Cálculo Número N (USACE)	43
Tabela 7 - Análise das deflexões	45
Tabela 8 - Critérios para avaliação estrutural	46
Tabela 9 - Avaliação estrutural	46
Tabela 10 - Tipos de pavimentos de concreto	49
Tabela 11 - Coeficiente de recalque (K)	51
Tabela 12 - Veículos de projeto	52
Tabela 13 - Distribuição do tráfego	52
Tabela 14 - Repetições pelo tipo de eixo	53
Tabela 15 - Faixas de carga para dimensionamento	53
Tabela 16 - Dados de dimensionamento	58

LISTA DE QUADROS

Quadro 1 – Tensões equivalentes eixos simples e duplos (sem acostamento de concreto)	54
Quadro 2 – Tensões equivalentes para eixos triplos (sem acostamento de concreto)	55
Quadro 3 – Fator de erosão para eixos simples e duplos (sem acostamento de concreto	55
Quadro 4 – Fator de erosão para eixos triplos (sem acostamento de concreto)	56
Quadro 5 – Dimensionamento de pavimento de concreto	58

LISTA DE ABREVIATURAS E SIGLAS

ΔΔΡΔ	- A c	sociação	Americana	de	Autoridades	Portuárias
<i>1</i> 11 11 1 1	- 110	sociação	Tillerrealia	uc	Tutoriuaucs	1 Offuarias

AASHTO - American Association of State Highway and Transportation Officials

ABCP - Associação Brasileira de Cimento Portland

ANTAQ - Agência Nacional de Transportes Aquaviários

BGS – Brita Graduada Simples

BGTC - Brita Graduada Tratada com Cimento

CBR - California Bearing Ratio

CBUQ - Concreto Betuminoso Usinado a Quente

CONIT - Conselho Nacional de Integração de Políticas de Transporte

DNER - Departamento Nacional de Estradas de Rodagem

DNIT - Departamento Nacional de Infraestrutura de Transportes

IBGE – Instituto Brasileiro de Geografia e Estatística

IFPRC - Inspetoria Federal de Portos, Rios e Canais

ISC - Índice de Suporte Califórnia

PCA - Portland Cement Association

PCAC - Pavimento de Concreto com Armadura Contínua

PCPM - Pavimento de Concreto Pré-Moldado

PCS – Pavimento de Concreto Simples

PCPRO - Pavimento de Concreto Protendido

PDZ - Plano de Desenvolvimento e Zoneamento

PGO - Plano Geral de Outorgas

PNLP - Plano Nacional de Logística Portuária

PNLP - Plano Nacional de Logística Portuária

USACE - U.S. Army Corps of Engineers

VMDa -Volume Médio Diário Anual

SUMÁRIO

1	INTRODUÇÃO	16
1.1	JUSTIFICATIVA	17
1.2	OBJETIVOS	18
1.2.	.1 Objetivo geral	18
1.2.	.2 Objetivos específicos	18
2	REFERENCIAL TEÓRICO	19
2.1	IMPORTÂNCIA DOS PORTOS NA MACROECONOMIA	19
2.2	MODAIS DE TRANSPORTES PORTUÁRIOS	22
2.3	PLANOS DIRETORES PARA AÇÕES PORTUÁRIAS	26
2.4	PAVIMENTAÇÃO	28
2.4.	.1 Camadas constituintes do pavimento	30
2.4.	.1.1 Subleito	30
2.4.	.1.2 Base e sub-base	31
2.4.	.1.3 Revestimento	32
3	METODOLOGIA	34
4	DESENVOLVIMENTO	36
4.1	DETERMINAÇÃO DO TRÁFEGO FUTURO	39
4.2	DETERMINAÇÃO DO NÚMERO N	40
4.3	AVALIAÇÃO ESTRUTURAL DO PAVIMENTO EXISTENTE	43
4.4	AVALIAÇÃO DOS RESULTADOS	47
5	PAVIMENTOS DE CONCRETO	49
5.1	DIMENSIONAMENTO DO REFORÇO	50
6	CONCLUSÃO	
RE	FERÊNCIAS	60
	ÊNDICE	
AP	ÊNDICE A – Planta das vias internas e pontos de ensaio do Porto de Imbituba	64
	EXO	
	IFXO A – Ensaio deflectométrico - Porto de Imbituba	66

1 INTRODUÇÃO

Localizado em uma enseada aberta, a cerca de 90 quilômetros ao sul da capital do estado de Santa Catarina, o sistema Portuário de Imbituba se destaca no setor marítimo brasileiro por sua infraestrutura que permite a operação de todas as cargas em seus três berços de atracação.

Fundado por ingleses na década de 1880 e atualmente administrado pelo Governo do Estado de Santa Catarina por meio da SCPAR Porto de Imbituba, possuía inicialmente a função de operar o carvão extraído nas minas da cabeceira do Rio Tubarão, e hoje, possui a capacidade operacional de escoar granéis líquidos, contêineres, cargas vivas, granéis sólidos e carga geral.

Abrangendo uma área marítima de 5.633.162,73 m² e com uma área terrestre de 892.410,05 m², o Porto de Imbituba obteve movimentação recorde de pouco mais de 600 mil toneladas movimentadas no mês de junho de 2020. Movimentação essa que é facilitada pela sua proximidade com a rodovia BR-101, conectada por uma via de ligação com extensão de cerca de 6 quilômetros, bem como o acesso rodoviário regido pela Ferrovia Tereza Cristina que liga o Porto à cidade de Criciúma por meio de cerca de 164 quilômetros de malha (SANTA CATARINA, 2020).

A geografia marítima da região se mostra oportuna para o desenvolvimento das operações portuárias. Conforme informações operacionais divulgadas no site do Porto de Imbituba, os três berços de atracação dispõem de um molhe de abrigo de 850 metros, totalizando 905 metros de cais acostável. O calado máximo de 13,50 metros e variação de maré de pequena amplitude (entre -0,10 m e 1,20 m) são outras das características que favorecem a atracação, porém, de acordo com Monié e Vidal (2006) "[...] a eficiência e a dinâmica de um porto não se limitam apenas às instalações e à capacidade dos navios, mas sobretudo ao seu entorno, dadas as atividades produtivas que fazem uso dos seus serviços".

O conceito de hinterlândia é fruto de diversas definições, "[...] de modo geral as definições convergem no sentido de caracterizar a zona de influência de um porto como a área de mercado do porto em terra da qual ou para a qual o porto envia e recebe cargas" (PIZZOLATO; SCAVARDA; PAIVA, 2010).

Assim posto, paralelamente ao crescimento portuário, a cidade de Imbituba se desenvolve e a necessidade de adequação das vias internas se mostram como um investimento necessário. No ano de 2016 o acesso norte da cidade, principal acesso de caminhões ao Porto de Imbituba, foi recuperado, por meio da execução de pavimento de concreto, buscando abrigar

o tráfego diário de veículos pesados, bem como diminuir o número de acidentes graves e congestionamentos na região.

Do mesmo modo, os investimentos nas vias internas do Porto de Imbituba são inevitáveis, em face a crescente movimentação mensal de caminhões que são operadores fundamentais do fluxo de cargas no Porto. O desgaste sofrido pelo corpo estradal evolui diariamente, de forma ininterrupta, prejudicando o desempenho adequado do pavimento e afetando os usuários e os veículos.

De acordo com Bernucci et al. (2008, p. 403):

[...] do ponto de vista do usuário, o estado da superfície do pavimento é o mais importante, pois os defeitos ou irregularidades nessa superfície são percebidos uma vez que afetam seu conforto. Quando o conforto é prejudicado, significa que o veículo também sofre mais intensamente as consequências desses defeitos. Essas consequências acarretam maiores custos operacionais, relacionados a maiores gastos com peças de manutenção dos veículos, com consumo de combustível e de pneus, com o tempo de viagem etc. Portanto, atender o conforto ao rolamento também significa economia nos custos de transporte.

Com aproximadamente cinco quilômetros de extensão, as vias internas do Porto de Imbituba são o objeto do presente estudo, enfatizando as informações de tráfego e composição estrutural, a fim de propor as melhorias necessárias para abrigar a operação portuária dos próximos anos.

1.1 JUSTIFICATIVA

O modal marítimo mesmo sendo uma das modalidades de transporte de cargas e pessoas mais antigas da humanidade, continua a se desenvolver aceleradamente e não enfrenta a mesma saturação do modal rodoviário. Conforme citam os autores Monié e Vidal (2006) "[...] em escala global, as redes produtivas dependem cada vez mais do transporte marítimo que é responsável pela maioria dos fluxos de bens materiais entre os continentes, associandose também a outros tipos de modais".

É de suma importância a consonância de um Porto bem desenvolvido com seu corpo estradal, fortalecendo o conceito de hinterlândia entre estes dois modais, de modo a atingir o desempenho satisfatório no que se refere ao escoamento de todas as cargas que são operadas nele, garantindo a eficiência econômica, bem como a segurança de seus usuários.

Portanto, com o cenário exposto gerado pelo crescimento econômico portuário da região, juntamente a falta de um estudo de tráfego do Porto de Imbituba, este trabalho vislumbra

agregar ao Porto de Imbituba um estudo técnico referente às futuras demandas que surgirão com o aumento exponencial das operações.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Quantificar o crescimento do tráfego do Porto de Imbituba para os próximos anos e juntamente com informações coletadas do estado atual do corpo estradal, quantificar as demandas futuras e propor melhorias e inovações na área de pavimentação.

1.2.2 Objetivos específicos

- a) Realizar estudo de tráfego do Porto de Imbituba, aliado as informações coletadas das balanças a fim de determinar o volume de tráfego para os próximos 20 anos;
- Realizar a avaliação estrutural do pavimento existente a fim de auxiliar o Porto de Imbituba a manter as condições satisfatórias das vias internas;
- c) Propor alternativas construtivas para a pavimentação nos trechos mais requisitados, como as Portarias, Balanças e áreas próximas aos Cais.

2 REFERENCIAL TEÓRICO

2.1. IMPORTÂNCIA DOS PORTOS NA MACROECONOMIA

Historicamente, o litoral brasileiro começou a ser ocupado brevemente após a vinda das primeiras embarcações portuguesas, fato esse que surgiu da necessidade de garantir o resguardo da costa brasileira. A partir deste cenário, surge a ocupação de enseadas e baías, com a instalação de armações baleeiras ou de entrepostos comerciais, que futuramente permitiriam que os produtos do interior dos estados chegassem às áreas centrais do país (NEU, 2009).

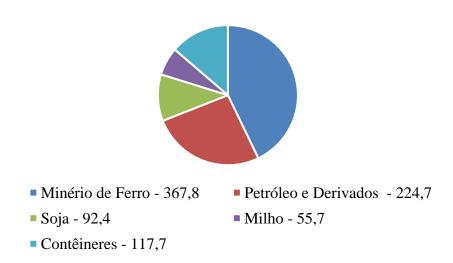
A exploração da colônia brasileira pelos portugueses mostra a importância das cidades portuárias na história brasileira, pela sua função de porta de entrada de colonos e porta de saída de produtos exportados para a metrópole. Outro marco na história brasileira atrelado ao setor portuário é o da vinda da família real portuguesa ao Brasil, em 1808, onde, em 28 de janeiro, D. João VI decretou a abertura dos Portos às Nações Amigas, redesenhando toda a estrutura comercial da colônia (AZENHA; PEQUENO, 2016).

É notável a relação íntima estabelecida a partir do desenvolvimento portuário de uma região com a economia do seu entorno. A capacidade de escoamento de produtos é um fator determinante para o crescimento econômico de uma região produtora, segundo Rodrigues (2007) "[...] a sua indisponibilidade pode inviabilizar uma região produtora, mesmo quando há fortes demandas desses produtos em outros locais". Estabelecendo uma análise crítica, é observada a influência portuária na economia em âmbito regional e nacional.

O porto estabelece uma relação de mutualismo com seu entorno, visto que seu desenvolvimento não pode ser firmado sem uma infraestrutura de apoio sustentada. Este cenário é bem ilustrado por Rodrigues (2007), quando cita que "para que o sistema portuário brasileiro passe a contribuir como um indutor do fortalecimento do comércio exterior, é fundamental criar condições para o desenvolvimento sustentado da infraestrutura aquaviária e terrestre". Assim posto, o crescimento portuário contribui para o desenvolvimento da infraestrutura da região, trazendo novos investimentos e oportunidades à medida que seu entorno o acompanha dando suporte.

Estabelecida a relação portuária com seu entorno, um outro ponto a ser destacado é a sua contribuição para o desenvolvimento do comércio exterior.

de investimentos para a infraestrutura de um país. Por ser a porta de entrada e saída de um imenso volume de mercadorias, os portos necessitam estar sempre em desenvolvimento para acompanhar o dinâmico ritmo do setor, o que exige investimentos regulares para a adaptação (BEVILAQUA, 2012, p. 17).


Define-se o comércio exterior como:

[...] forma pela qual um país se organiza em termos de políticas, leis, normas e regulamentos que disciplinam a execução de operações de importação e exportação de mercadorias e serviços com o exterior. O comércio exterior contempla as operações comerciais de exportação e importação (POYER; RORATTO, 2017, p. 11).

Com o crescente desenvolvimento do comércio exterior brasileiro, os benefícios recebidos pelos diversos setores envolvidos são notados. Alguns exemplos citados por Poyer e Roratto (2017), são o aumento de fluxo monetário, ampliação do mercado de consumo, maior diversidade de mercadorias com a oferta de produtos importados, capacitação tecnológica, geração de empregos etc.

Os números traduzem o cenário da participação portuária no comércio exterior brasileiro com êxito. Conforme o Governo Federal, o setor portuário movimenta uma média de 293 bilhões de reais anualmente e detém cerca de 95% da corrente do comércio exterior do Brasil. Pelo anuário estatístico da Agência Nacional de Transportes Aquaviários (ANTAQ), no ano de 2019, foram movimentadas 1.104 bilhão de toneladas no respectivo ano, representado um crescimento acumulado de 31,5% nos últimos 9 anos. O gráfico 1 a seguir, demonstra o ranking de cargas movimentadas pelos portos brasileiros no ano de 2019.

Gráfico 1 - Cargas movimentadas no ano de 2019 (milhões de toneladas)

Fonte: Agência Nacional de Transportes Aquaviários (Brasil), (2019).

Uma outra perspectiva a ser abordada sobre a influência portuária na macroeconomia é acerca da cabotagem, que se refere ao transporte aquaviário entre portos dentro do território nacional. A prática da cabotagem é favorecida dentro do território brasileiro pela grande extensão do litoral brasileiro, onde as principais capitais são próximas de grandes portos brasileiros. Como já mencionada anteriormente, é uma atividade difundida desde o período colonial, pelo comércio estabelecida entre as capitanias coloniais. Outro fator determinante, bem posto por Lacerda (2004, p. 51) é que:

[...] a cabotagem é também favorecida pelas escassas alternativas dos modais dutoviário e ferroviário entre os estados ao longo da costa brasileira. Existe apenas uma linha ferroviária entre o Nordeste e o Sudeste, não havendo ligação ferroviária entre o Norte e o restante do país. As malhas ferroviárias do Sul e do Sudeste são operadas por diferentes concessionárias e o tráfego entre elas é reduzido.

Conforme dados operacionais divulgados pela ANTAQ, no período de 2018 a 2019, a cabotagem foi responsável pela movimentação de 240,3 milhões de toneladas, onde 78% foi movimentado por Portos Privados e 22% por Portos Públicos. Sobre a cabotagem para transporte de contêineres, o anuário destaca um crescimento médio anual de cerca de 13%, com 31,8 milhões de toneladas movimentadas no ano em questão.

Apesar do crescimento se mostrar promissor a cabotagem ainda ocupa 11% das trocas comerciais entre os estados brasileiros, conforme estudo divulgado pelo Instituto Ilos em 2019, ficando atrás do modal rodoviário com 61% e as ferrovias com 22%. Fazendo um paralelo com países desenvolvidos pelo mundo, o estudo aponta que em comparação com os países desenvolvidos, o Japão movimenta 44% da sua carga através da cabotagem e 50% através das rodovias, os Estados Unidos utilizam o transporte rodoviário em 43% das movimentações, na União Europeia o índice é de 49% e na China apenas 33%. A comparação deixa claro a disparidade em relação ao país, onde há a oportunidade para o transporte de cargas entre as principais cidades litorâneas do país serem feitas através da cabotagem, diminuindo o tráfego rodoviário pesado (ALVARENGA, 2019).

O estudo aponta a dependência do comércio brasileiro com o modal rodoviário como a frente de diversos problemas logísticos, visto que sua utilização para transporte de grandes distâncias acelera o desgaste das rodovias e gera custos elevados de manutenção. A média do valor do frete rodoviário é cerca de 20% maior que o frete para cabotagem e o risco de desabastecimento devido esta dependência é uma realidade, como visto na greve dos

caminheiros de 2018. O transporte rodoviário ainda é passivo da ocorrência de furtos de carga bem como a maior incidência de acidente, em comparação a cabotagem.

2.2. MODAIS DE TRANSPORTES PORTUÁRIOS

Os sistemas de transportes são essenciais para o giro da economia de um país. Em um cenário de mundo cada vez mais globalizado, atualmente as distâncias físicas são cada vez mais transponíveis, fato que possibilita a criação de novos nichos de mercados, e desta forma, a necessidade de se transportar cargas com mais rapidez e economia. Trazendo os conceitos de logística à tona, o transporte de cargas se mostra como um dos principais pilares de uma empresa, representando em média cerca de 64% dos custos logísticos e 4,3% do faturamento (WANKE; FLEURY, 2006).

Os modais de transporte de cargas atualmente existentes são cinco: aéreo, aquaviário, dutoviário, ferroviário e rodoviário, cada um com suas características operacionais distintas. As vantagens e desvantagens dos diferentes tipos de modais de transporte pode ser conferida na tabela 1:

Tabela 1 - Vantagens e desvantagens dos modais de transporte

Tipo de Modal	Vantagens	Desvantagens	
Aéreo	Trânsito livre. Maior segurança quanto a furtos e acidentes. Prazos de entrega menores.	Custos de operação elevados. Capacidade de carga menor. Depende de outros tipos de modais.	
Aquaviário	Alta capacidade de carga. Custo baixo de frete. Baixo risco de avaria nas cargas.	Prazo de entrega elevado. Burocracia. Falta de investimentos no setor.	
Dutoviário	Alta capacidade de carga. Baixo custo operacional. Segurança e confiabilidade.	Investimento inicial elevado. Trajeto fixo. Risco de acidentes ambientais.	
Ferroviário	Custos operacionais baixos. Alta capacidade de carga. Segurança quanto a avarias e furtos.	Rota fixa e inflexível. Dependência de outras modais. Pouco investimento no setor.	
Rodoviário	Flexibilidade nas rotas. Menos burocracia. Maior investimento.	Alto custo do frete. Tempo elevado de frete para longas distâncias. Alto risco de avarias, acidentes e furtos de cargas.	

Fonte: Prestex (2019).

Representando um dos modais de transporte mais antigos, o transporte aquaviário possui como as primeiras potências marítimas os egípcios, gregos e fenícios, com registros históricos datados há cerca de 2.500 a.C. das primeiras embarcações circulando pelo Rio Nilo (CÂMARA..., 2004). O destaque histórico para a utilização de embarcações mercantis surge nos séculos XIV a XVIII, com a política mercantilista das grandes nações europeias. A Revolução Industrial se mostra como o seguinte marco histórico com a utilização de máquinas a vapor e posteriormente com os navios que utilizavam óleo combustível, turbinas e os impulsionados a energia nuclear.

Apesar do primeiro modal de transporte de cargas a ser usado no Brasil, o setor se encontra em expansão constante e como visto anteriormente não apresenta a maior parcela no transporte de cargas. Reforçando o mencionado anteriormente, em comparação com outros países desenvolvidos, o Brasil usa pouco o modal aquaviário em comparação ao rodoviário, conforme os dados estatísticos do gráfico 2 abaixo:

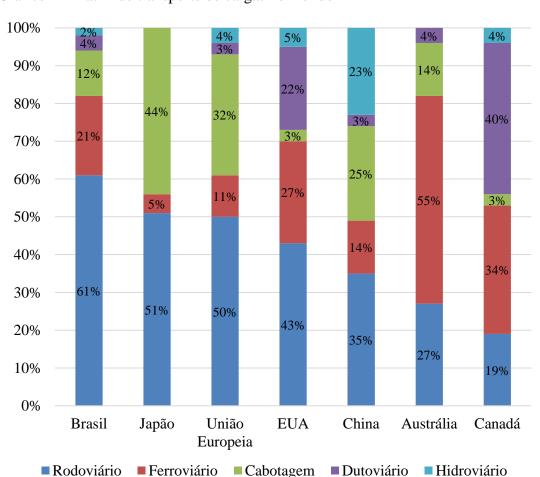


Gráfico 2 - Matriz de transporte de cargas no mundo

Fonte: Alvarenga (2020, adaptado pelo autor).

Atualmente o sistema portuário brasileiro é composto de Portos Privados e Portos Públicos, também chamados de Organizados, totalizando 215 instalações portuárias, conforme anuário do ano de 2019 da ANTAQ.

Conforme o Art. 2º da Lei nº 12.815, de 5 de junho de 2013, também chamada de Nova Lei dos Portos, que discorre sobre a exploração direta e indireta pela União de portos e instalações portuárias e sobre as atividades desempenhadas pelos operadores, define-se:

- I porto organizado: bem público construído e aparelhado para atender a necessidades de navegação, de movimentação de passageiros ou de movimentação e armazenagem de mercadorias, e cujo tráfego e operações portuárias estejam sob jurisdição de autoridade portuária;
- II área do porto organizado: área delimitada por ato do Poder Executivo que compreende as instalações portuárias e a infraestrutura de proteção e de acesso ao porto organizado;
- III instalação portuária: instalação localizada dentro ou fora da área do porto organizado e utilizada em movimentação de passageiros, em movimentação ou armazenagem de mercadorias, destinadas ou provenientes de transporte aquaviário;
- IV terminal de uso privado: instalação portuária explorada mediante autorização e localizada fora da área do porto organizado;
- V estação de transbordo de cargas: instalação portuária explorada mediante autorização, localizada fora da área do porto organizado e utilizada exclusivamente para operação de transbordo de mercadorias em embarcações de navegação interior ou cabotagem;
- VI instalação portuária pública de pequeno porte: instalação portuária explorada mediante autorização, localizada fora do porto organizado e utilizada em movimentação de passageiros ou mercadorias em embarcações de navegação interior; VII instalação portuária de turismo: instalação portuária explorada mediante arrendamento ou autorização e utilizada em embarque, desembarque e trânsito de passageiros, tripulantes e bagagens, e de insumos para o provimento e abastecimento de embarcações de turismo (BRASIL, 2013).

Segundo a resolução nº 2969 de 4 de julho de 2013, da Agência Nacional de Transportes Aquaviários, classifica-se os portos públicos, Terminais de Uso Privado e Estações de Transbordo de Cargas marítimas da seguinte maneira:

- [...] I PORTOS MARÍTIMOS são aqueles aptos a receber linhas de navegação oceânicas, tanto em navegação de longo curso (internacionais) como em navegação de cabotagem (domésticas), independente da sua localização geográfica;
- II PORTOS FLUVIAIS são aqueles que recebem linhas de navegação oriundas e destinadas a outros portos dentro da mesma região hidrográfica, ou com comunicação por águas interiores; e
- III PORTOS LACUSTRES são aqueles que recebem embarcações de linhas dentro de lagos, em reservatórios restritos, sem comunicação com outras bacias (AGÊNCIA..., 2013, p. 1).

As informações operacionais do ano de 2019 da ANTAQ, classificam os principais portos brasileiros de acordo com sua movimentação no ano corrente, conforme gráficos 3 e 4:

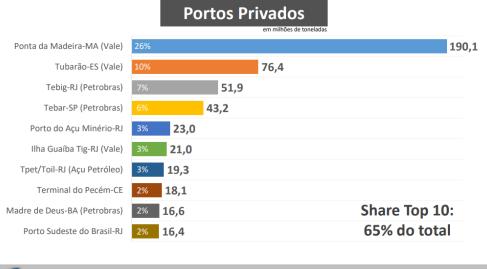

Portos Organizados Santos-SP 106,2 48,5 Paranaguá-PR 43,2 Itaguaí-RJ Rio Grande-RS 25,8 25,2 Itaqui-MA Suape-PE 23,9 Vila do Conde-PA Santarém-PA 12.5 **Share Top 10:** São F. Sul-SC 85% do total Rio de Janeiro-RJ

Gráfico 3 - Ranking dos principais portos organizados

DANTAG

Fonte: Agência Nacional de Transportes Aquaviários (Brasil), (2019).

Gráfico 4 - Ranking dos principais portos privados

DANTAG

Fonte: Agência Nacional de Transportes Aquaviários (Brasil), (2019).

O Porto de Santos é o maior complexo portuário da América Latina. Conforme informações operacionais, responde por 30% das trocas comerciais brasileiras, e segundo o ranking da Associação Americana de Autoridades Portuárias (AAPA) do ano de 2016, ocupa a 39º lugar de maior porto do mundo.

2.3 PLANOS DIRETORES PARA AÇÕES PORTUÁRIAS

A responsabilidade da administração dos portos, já no período colonial, era das Câmaras Municipais até o decreto de 13 de julho de 1820, passando a responsabilidade de todos os portos brasileiros para Repartição da Marinha. Após a independência, os portos brasileiros passam por uma sucessão de órgãos administrativos, primeiramente para a Intendência dos Arsenais da Marinha, em 1845 para a então criada Capitania dos Portos, em 1873 para o Ministério da Agricultura, Comércio e Obras Públicas e por fim para a Inspetoria Federal de Portos, Rios e Canais (IFPRC) através do Decreto-Lei 6.368, de 1907. Passando pelos mais diversos órgãos e pastas federais, buscando acompanhar a modernização e a melhor forma de explorar o potencial portuário brasileiro, o próximo marco veio através da Lei 6.222/1975 e Decreto 76.925/1975, com a criação da Portobrás, que viria a ser responsável por administrar e explorar os portos brasileiros (GOULARTI FILHO, 2007).

[...] Com a criação da Portobrás, inicialmente, os portos mais beneficiados foram aqueles que estavam dentro dos corredores de exportação, uma vez que era necessário melhorar a situação do Balanço de Pagamento. Os portos ligados ao complexo siderúrgico também foram aparelhados, já que os minérios também faziam parte da pauta de exportação, destacando o Complexo Carajá. Também foram reaparelhados os portos que contribuíam na racionalização de energia e derivados de petróleo, como o porto carvoeiro de Imbituba, em Santa Catarina (GOULARTI FILHO, 2007, p. 479).

A era Portobrás perdura até o governo do presidente brasileiro Fernando Collor de Mello, que através da Medida Provisória n. 151 extingue cinco autarquias, oito fundações, três empresas públicas e oito sociedades de economia mista.

[...] Para os portos brasileiros, a extinção da Portobrás marcou o início de uma confusão administrativa e uma rápida deterioração das estruturas. Do ponto de vista da hierarquia administrativa, as companhias docas e os demais departamentos simplesmente ficaram "soltos". O Brasil estava entrando na era neoliberal (GOULARTI FILHO, 2007, p. 479).

Com a extinção da Petrobrás, foi criado o Departamento de Portos dentro da Secretaria de Transportes e parte das funções da extinta empresa foram assumidas pelas companhias docas estaduais. A próxima mudança surge em 1993, com o Ministério dos Transportes, os portos passam a ser de responsabilidade do Departamento Nacional de Transportes Aquaviários. No ano de 2001, é criado a Agência Nacional de Transportes Aquaviários (ANTAQ) pela lei 10.233, de 5 de julho, órgão que até os dias de hoje é responsável pelos portos no Brasil (GOULARTI FILHO, 2007).

No âmbito legislativo, temos como destaque a tentativa de modernização imposta pela Lei nº 8.630 de 1993:

[...] A Lei de Modernização dos Portos, 8.630 de 25 de fevereiro de 1993, trouxe algumas novidades, mas, como na Lei de 1869, aposta na iniciativa privada como a única solução para reverter o grave problema portuário. Os pilares básicos da Lei de Modernização são: a) a ampliação do direito à iniciativa privada de fazer as operações portuárias, que na prática significou a privatização dos portos, criando a figura do operador portuário; b) a criação do OGMO (Órgão Gestor da Mão-de-Obra), entidade responsável em administrar o fornecimento da mão-de obra do trabalhador portuário avulso, quebrando o monopólio dos sindicatos; c) a criação da Administração Portuária, sob responsabilidade das companhias docas estatais; e d) a instituição do Conselho de Autoridade Portuária cuja função é deliberar sobre as regras de funcionamento de cada porto, formado por três blocos: poder público, operadores portuários e trabalhadores portuários (GOULARTI FILHO, 2007, p. 481).

Após duas décadas, um novo marco regulatório legislativo da área portuária surge através da nova Lei dos Portos (nº 12.815 de 2013), dispondo sobre a exploração direta e indireta pela União de portos e instalações portuárias e sobre as atividades desempenhadas pelos operadores portuários (BRASIL, 2013).

Buscando alinhar o planejamento portuário, a Portaria nº 03 de 2014, da Secretaria do Portos, estabelece quatro instrumentos de planejamento do setor portuário, conforme o Art. 1º e a figura 1 logo abaixo.

- Art. 1º São instrumentos de planejamento do setor portuário nacional, de caráter contínuo:
- I O Plano Nacional de Logística Portuária PNLP instrumento de Estado de planejamento estratégico do setor portuário nacional, que visa identificar vocações dos diversos portos, conforme o conjunto de suas respectivas áreas de influência, definindo cenários de curto, médio e longo prazo com alternativas de intervenção na infraestrutura e nos sistemas de gestão, garantindo a eficiente alocação de recursos a partir da priorização de investimentos, evitando a superposição de esforços e considerando as disposições do Conselho Nacional de Integração de Políticas de Transporte CONIT.
- II O Plano Mestre instrumento de planejamento de Estado voltado à unidade portuária, considerando as perspectivas do planejamento estratégico do setor portuário nacional constante do Plano Nacional de Logística Portuária - PNLP, que visa direcionar as ações, melhorias e investimentos de curto, médio e longo prazo no porto e em seus acessos.
- III O Plano de Desenvolvimento e Zoneamento PDZ instrumento de planejamento operacional da Administração Portuária, que compatibiliza as políticas de desenvolvimento urbano dos municípios, do estado e da região onde se localiza o porto, visando, no horizonte temporal, o estabelecimento de ações e de metas para a expansão racional e a otimização do uso de áreas e instalações do porto, com aderência ao Plano Nacional de Logística Portuária PNLP e respectivo Plano Mestre.
- IV O Plano Geral de Outorgas PGO instrumento de planejamento de Estado que consiste em um plano de ação para a execução das outorgas de novos portos ou terminais públicos e privados, reunindo a relação de áreas a serem destinadas à exploração portuária nas modalidades de arrendamento, concessão, autorização e delegação, com respectivos horizontes de implantação, tomando como base o planejamento do Poder Concedente, das Administrações Portuárias e da iniciativa privada (BRASIL, 2014).

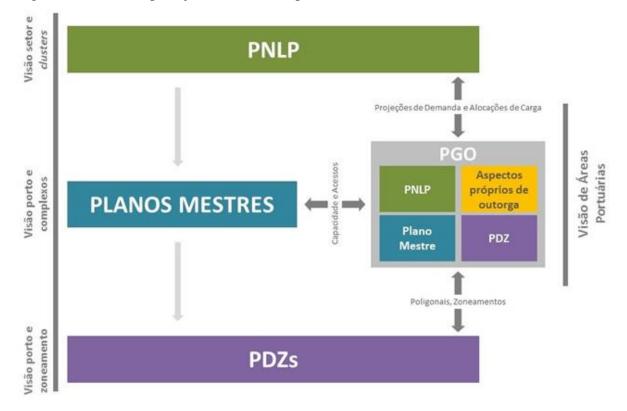


Figura 1 - Planos de planejamento do setor portuário

Fonte: Brasil (2020).

Conforme portaria nº 1.658, de 6 de agosto de 2020 do Ministério da Infraestrutura, é aprovado o Plano de Desenvolvimento e Zoneamento do Porto Organizado de Imbituba, discorrendo sobre as informações gerais, a situação atual e plano operacional. De acordo com o documento em questão, o Porto de Imbituba dispõe de 15 vias internas sem dimensionamento de capacidade de tráfego e demanda, e não dispondo de um plano de gestão e controle de tráfego.

2.4. PAVIMENTAÇÃO

O conceito de pavimento é bem exposto por Bernucci et al. (2008, p. 9):

[...] é uma estrutura de múltiplas camadas de espessuras finitas, construída sobre a superfície final de terraplenagem, destinada técnica e economicamente a resistir aos esforços oriundos do tráfego de veículos e do clima, e a propiciar aos usuários melhoria nas condições de rolamento, com conforto, economia e segurança.

O desenvolvimento de estradas pavimentadas possui grande valor histórico no desenvolvimento das civilizações. A construção de estradas é ligada ao conceito de expansão territorial e soberania:

[...] tamanha foi a importância desses caminhos pavimentados para a sociedade romana que, na época áurea de Otávio Augusto (30 a.C. a 14 d.C.), por solicitação do Senado e da população do império, o senhor de Roma era responsável direto pela manutenção das grandes vias de circulação, serviço de extrema necessidade para a estabilidade política, econômica, militar e sobretudo para a agricultura como atividade econômica (BALBO, 2007 *apud* ROSTOVTZEFF, p. 19, 1983).

Classifica-se os pavimentos em três tipos: pavimentos flexíveis, pavimentos rígidos e pavimentos semirrígidos.

Os pavimentos flexíveis são aqueles em que não trabalham a tração, onde o suporte das cargas que recebe é feito pela distribuição das forças através das diferentes camadas que o constituem. Seu dimensionamento é feito de acordo com as características geotécnicas dos materiais que irão formas as diferentes camadas e do valor do CBR do solo que irá exercer a função de fundação para o pavimento. Um esboço das camadas que constituem um pavimento flexível pode ser observado na figura 2.

Figura 2 - Seção transversal de um pavimento flexível

Revest	mento asfáltico
Base	
Sub-ba	se 👙 👙
V	
Reforg	o do subleito
X/YXX/	*****************
Suble	0

Fonte: Bernucci et al. (2008).

Os pavimentos rígidos são aqueles que trabalham à tração. É constituído por uma camada superior de concreto, na maioria das vezes não armada, desta forma, o próprio pavimento é responsável pela resistência aos esforços de uso, devendo o concreto ser dimensionado para resistir a estas cargas. Pode ser observado na figura 3 as diferentes camadas que constituem um pavimento rígido.

Figura 3 - Seção transversal de um pavimento rígido

Placa de concreto de cimento Portland

Sub-base

Reforço do subleito

Subleito

Fonte: Bernucci et al. (2008).

Conforme Marques (2006), o terceiro tipo de pavimento, os semirrígidos ou semiflexíveis, é uma categoria intermediaria aos outros dois citados, sendo constituído por misturas de solo-cimento, solo-cal, solo-betume e outras, com resistência média a tração.

A importância da execução de uma forma de unir as diferentes camadas que compõe o pavimento é destacada por Balbo (2007) ao citar a execução de uma camada de filme asfáltico, chamada de pintura de ligação, composta por emulsões asfálticas, com função de aderir uma camada e outra, e a imprimação impermeabilizante feita de asfaltos diluídos.

2.4.1. Camadas constituintes do pavimento

2.4.1.1. Subleito

A camada de subleito é formada pelo solo natural compactado. Servirá como fundação, dando suporte para as camadas que irão ser sobrepostas a ele, bem como irá ser responsável por dissipar as cargas à medida que a profundidade aumenta.

É de extrema importância o conhecimento das características geotécnicas do solo para o dimensionamento correto das espessuras das outras camadas que irão constituir o pavimento.

A fim de determinar um dos parâmetros necessários no dimensionamento, o Departamento Nacional de Infraestrutura de Transportes (DNIT), discorre na norma 172/2016 sobre os procedimentos para a determinação do Índice de Suporte Califórnia (ISC), também conhecido por sua sigla em inglês CBR (*California Bearing Ratio*). O ensaio em questão visa determinar um valor relativo do suporte dos solos, onde um conjunto de amostras, com massa total igual ou superior a 90 kg, são modeladas e compactadas em corpos de prova para

posteriormente serem postas em uma prensa para os ensaios de expansão e penetração, buscando determinar a massa específica do solo e o ISC em porcentagem (BRASIL, 2016).

Conforme Bernucci *et al.* (2008), o índice foi criado no final da década de 1920, na Califórnia, onde os melhores materiais granulares de bases foram selecionados e ensaiados a fim de estabelecer um valor referencial padrão, equivalente a 100%.

[...] A resistência no ensaio ISC é uma resposta que combina indiretamente a coesão com o ângulo de atrito do material. O ISC é expresso em porcentagem, sendo definido como a relação entre a pressão necessária para produzir uma penetração de um pistão num corpo-de-prova de solo ou material granular e a pressão necessária para produzir a mesma penetração no material padrão referencial (BERNUCCI *et al.*, 2008, p. 342).

Marques (2006), afirma que os subleitos que acusarem valores de ISC menores que 2%, devem ser substituídos por um material melhor, pois quanto mais alto o valor resultante de ISC de um subleito, mais resistente será o solo e menores serão as camadas seguintes.

Conforme a Especificação de Serviço 300/2009 do DNIT, a fim de melhorar a qualidade do subleito, pode-se executar uma camada de reforço de no mínimo 10 cm, granulometricamente estabilizada, usando solos ou misturas de solos com suporte superior ao do subleito original, buscando aumentar o valor de suporte dele (BRASIL, 2010).

2.4.1.2. Base e sub-base

As camadas de base e sub-base são posicionadas diretamente acima do subleito e possuem função de aliviar as pressões que irão ser transmitidas as camadas inferiores, bem como possuem funções importantes na drenagem subsuperficial dos pavimentos. Quando por critérios de dimensionamento, a espessura da camada de base se mostra muito espessa, é comum dividi-la em duas camadas, criando assim a base e sub-base, a fim de satisfazer o dimensionamento e por questões construtivas e econômicas (BALBO, 2007).

Conforme Balbo (2007), os principais materiais empregados nas camadas de base e subbase, quando necessário, são solos estabilizados naturalmente, mistura de solo e agregados (solo-brita), brita graduada, brita graduada tratada com cimento, solo estabilizado quimicamente com ligante hidráulico ou asfáltico, concretos etc.

Os materiais mais empregados da classe granular e de solo, conforme Bernucci *et al*. (2008, p. 352) são:

[...] brita graduada simples (BGS) e bica ou brita corrida; macadame hidráulico; macadame a seco; misturas estabilizadas granulometricamente (estabilizadas por

combinação de materiais para atender certos requisitos ou mecanicamente); soloagregado; solo natural; solo melhorado com cimento ou cal. Deve-se ressaltar ainda a existência de outros materiais de uso crescente em pavimentação, decorrentes de reutilização e reciclagem: escória de alto-forno; agregado reciclado de resíduo sólido de construção civil e demolições; rejeitos de extração de rochas ornamentais; mistura asfáltica fresada etc.

Bernucci *et al.* (2008), cita também o emprego de materiais cimentados, como brita graduada tratada com cimento (BGTC), solo-cimento, solo-cal, solo-cal-cimento, concreto rolado, bem como o emprego de misturas asfálticas com solo-asfalto, solo-emulsão, macadame betuminoso e base asfáltica de módulo elevado.

2.4.1.3 Revestimento

O revestimento é a camada que receberá primeiramente as cargas de utilização e sofrerá mais fortemente com as intempéries climáticas, também chamada de camada de rolamento.

Pode-se dividir o revestimento em duas ou mais camadas, por razões construtivas, técnicas e de custo. As camadas subdividas são chamadas de camada de rolamento e camada de ligação. A camada de ligação é uma camada intermediária, composta por mistura asfáltica, entre a camada de rolamento e a base do pavimento, associada ao *binder*. Uma outra camada associada ao revestimento é a camada de reforço, popularmente chamado de "recape" ou "recapeamento", locada sobre a camada de rolamento por funcionais e estruturais. Uma outra camada chamada de camada de nivelamento é executada antes da camada de rolamento e de "recapeamentos" a fim de corrigir os desníveis da pista e nivelar o perfil para receber as camadas necessárias (BALBO, 2008).

Balbo (2007) destaca a importância de os materiais usados possuírem a característica de se aglutinar e se dispor de maneira a evitar a movimentação horizontal dos compostos, citando os paralelepípedos, blocos pré-moldados de concreto, placas de concreto, concreto compactado com rolado, tratamentos superficiais betuminosos e misturas asfálticas.

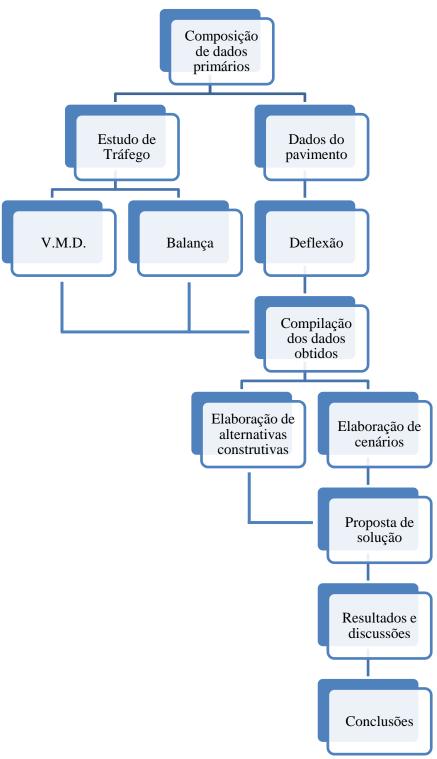
No Brasil, para a composição do revestimento de pavimentos, comumente se utiliza de misturas de agregados produzidos em usinas e transportadas por caminhões basculante até o local de aplicação. Destas misturas as mais utilizadas são a de concreto asfáltico e concreto betuminoso usinado a quente, o CBUQ. Os diferentes tipos de misturas se diferem de acordo com a granulometria do material e as exigências mecânicas em função da destinação de uso. (BERNUCCI *et al.*, 2008). De maneira ilustrativa, consta na figura 4 um corpo de prova

mostrando diferentes revestimentos de um pavimento asfáltico e na figura 5 a execução de um serviço de reparo no pavimento asfáltico do Porto de Imbituba.

Figura 4 - Corpo-de-prova extraído de pista mostrando a composição do revestimento asfáltico

Fonte: Bernucci et al. (2008).

Figura 5 - Execução de camada de reforço (recapeamento) de CBUQ no Porto de Imbituba



Fonte: Elaborado pelo autor (2020).

3 METODOLOGIA

A metodologia proposta para este trabalho, é apresentada através da figura 6, a seguir:

Figura 6 - Fluxograma apresentando a metodologia adotada

Fonte: Elaborado pelo autor (2020).

Conforme o fluxograma, o presente trabalho possui como metas iniciais a composição de dados primários por meio de um estudo do tráfego portuário e a obtenção do atual estado do corpo estradal do Porto de Imbituba.

A fim de compor o estudo de tráfego, serão levantadas informações operacionais cedidas pelas quatro balanças do Porto de Imbituba. Os dados obtidos serão processados conforme a metodologia do DNIT, presente no Manual de Estudos de Tráfego (BRASIL, 2006). Destarte, serão definidos o volume médio diário anual (VMDa), a classificação da frota, o carregamento da frota, o fator de equivalência de carga, e por fim, a obtenção do número equivalente N. Além de obter os dados do tráfego atualmente no Porto, o presente trabalho possui também como meta a quantificação da previsão de crescimento do tráfego para um período de 20 anos, buscando prever as manutenções e melhorias necessárias nas vias internas para abrigar o crescimento operacional portuário previsto.

O estado atual do corpo estradal será quantificado por inspeções visuais, bem como pela interpretação das deflexões do pavimento levantadas por meio de ensaio de Viga Benkelman, realizado pelo Porto de Imbituba no mês de agosto do ano de 2020.

Com a avaliação dos dados obtidos pelo ensaio, juntamente com as informações do tráfego, serão aplicados os procedimentos de avaliação estrutural dos pavimentos flexíveis, conforme DNER-PRO 011/79 e DNER-PRO 269/94, a fim de definir a deflexão admissível, a estimativa de vida restante do pavimento e dimensionar a espessura dos reforços de pavimento necessárias.

A partir das informações obtidas serão avaliados os cenários possíveis, com o cruzamento dos dados e projeções futuras. Paralelamente, serão estudadas alternativas construtivas, buscando um comparativo entre os diferentes cenários, a fim de propor a melhor estratégia a curto e longo prazo, visando a melhor decisão no que se refere a economia e a segurança das vias internas do Porto de Imbituba.

4 DESENVOLVIMENTO

De frente para o crescente tráfego necessário para a execução das operações portuárias, o desgaste do pavimento se mostra recorrente. As patologias geradas pelo trânsito diário representam um gasto recorrente no montante referente à manutenção da infraestrutura portuária.

Atualmente, um novo edital para a contração de uma empresa para realizar a manutenção das vias está sendo elaborado pela equipe de infraestrutura civil do Porto. As estimadas apontam que o novo contrato deva fornecer a execução de cerca de 4.500,00 metros lineares de corte em pavimento de asfalto/concreto, 32.000,00 metros quadrados de imprimação com asfalto diluído, 32.000,00 metros quadrados de pintura de ligação com emulsão RR-1C e cerca de 1.600,00 metros cúbicos de concreto asfáltico para o revestimento das vias, serviços esses referentes também aos reparos que deverão ser feitos.

Pelos dados operacionais cedidos pelo Setor de Operações do Porto, o acesso de veículos de Imbituba ocorre sete dias por semana, com horário de maior pico das 7h00min às 19h00min. Frequentemente os acessos ultrapassam os valores de cem veículos por hora conforme as informações das portarias.

Conforme pode ser verificado no gráfico 5, o comparativo anual da movimentação de cargas no Porto aponta um crescimento contínuo desde 2017.

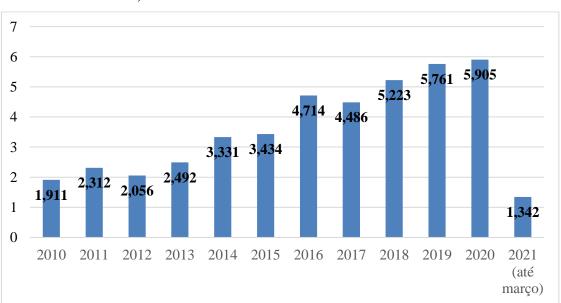


Gráfico 5 – Comparativo anual da movimentação de cargas no Porto de Imbituba (milhões de toneladas)

Fonte: Santa Catarina (2021).

Ao analisar o ano de 2019, verifica-se uma movimentação de mais de 5,7 milhões de toneladas, onde deste total, 62% entraram ou saíram da área portuária por meio de caminhões, visto que a malha ferroviária que atende o porto transporta apenas contêineres.

Conforme dados cedidos pela administração portuária, no ano de 2021 no período de janeiro a março movimentou 1.342.949,00 de toneladas, um aumento, em números inteiros, na ordem de 14% em comparação a movimentação de 1.179.133,328 de toneladas do ano de 2020 no mesmo período, confirmando as expectativas de crescimento nas operações previstas.

Em função do Porto de Imbituba se tratar de um ambiente com acesso restrito e controlado, no presente trabalho a contagem volumétrica do tráfego se deu a partir de informações cedidas pelas portarias de acesso ao porto, onde o setor de operações do Porto de Imbituba é responsável pela logística e funcionamento dessas estruturas.

Observa-se na tabela 2 a relação da quantidade de veículos e a movimentação mensal para o ano de 2019 e 2020.

Tabela 2 - Relação veículos x movimentação de cargas no ano de 2019

Mês	Número de Caminhões	Movimentação Mensal (ton.)		
Janeiro	11010	325.975,956		
Fevereiro	15720	423.995,082		
Março	19153	592.640,932		
Abril	17042	549.228,692		
Maio 14844		433.821,139		
Junho 16652		542.594,949		
Julho 17425		532.825,677		
Agosto	16749	495.607,581		
Setembro 14469		422.193,112		
Outubro 15264		497.503,661		
Novembro 14369		430.732,984		
Dezembro 13560		514.330,966		
Total 186284		5.761.450,731		

Fonte: Operações (2020).

Verifica-se no gráfico 6 a distribuição mensal da entrada de caminhões do Porto de Imbituba no ano de 2019.

25000

20000

15000

10000

5000

0

yar fet war ko war hir yu ke se se ou wo yo pet

Gráfico 6 – Entrada de caminhões no ano de 2019

Fonte: Operações (2020).

Verifica-se com as informações apresentadas, que cada veículo movimentou em média cerca de 30,928 toneladas no ano de 2019.

Volume Médio Diário Anual (VMDa) em 2019 = 186284/365 = 510,37 veículos por dia.

Tabela 3 - Relação veículos x movimentação de cargas no ano de 2020

Mês	Número de Caminhões	Movimentação Mensal (ton.)
Janeiro	12314	342.806,272
Fevereiro	10633	350.274,503
Março	14172	486.052,553
Abril	16977	414.448,354
Maio	12370	435.261,804
Junho	19555	602.370,148
Julho	16372	552.354,510
Agosto	17739	558.552,752
Setembro	15537	602.737,308
Outubro	13172	376.618,847
Novembro	14146	484.320,015
Dezembro	21184	662.512,143
Total	184171	5.904.622,00

Fonte: Operações (2021).

Verifica-se no gráfico 7 a distribuição mensal da entrada de caminhões do Porto de Imbituba no ano de 2020.

Gráfico 7 – Entrada de caminhões no ano de 2020

Fonte: Operações (2021).

Verifica-se com as informações apresentadas, que cada veículo movimentou em média cerca de 32,06 toneladas no ano de 2020.

Volume Médio Diário Anual (VMDa) em 2020 = 184171/365 = 504,58 veículos por dia.

4.1 DETERMINAÇÃO DO TRÁFEGO FUTURO

Para a determinação do tráfego futuro do Porto de Imbituba utilizaremos o Método do Fator de Crescimento, conforme Manual de Estudos de Tráfego do DNIT – IPR 723.

O método em questão utiliza o fator de crescimento, gerado pela variação de dados pertinentes a composição do tráfego no trecho em que será feito a análise. Em caso de dimensionamento para vias que compõem um município, utiliza-se, por exemplo, o crescimento populacional. Para o Porto de Imbituba, tem-se como a movimentação total anual de cargas o principal indicativo de crescimento sendo esse dado utilizado para calcular o fator de crescimento (BRASIL, 2006).

$$T_f = F_c . T_a$$

Onde:

 T_f = tráfego futuro;

 F_c = fator de crescimento;

 T_a = tráfego conhecido em um determinado ano.

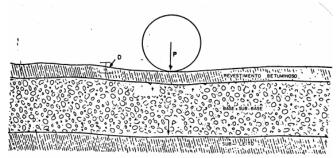
O fator de crescimento pode ser obtido pela razão dos dados da movimentação anual de 2010 e 2020, que constam na tabela 3 e gráfico 5 apresentados anteriormente.

$$F_c = \frac{P_{2020}}{P_{2010}}$$

$$F_c = \frac{5,905}{1,911} = 3,09$$

Tráfego futuro para o ano de 2030:

$$T_{2030} = 3,09.504,58 = 1559,15 \ veículos \ por \ dia.$$


Tráfego futuro para o ano de 2040:

$$T_{2040} = 3,09.1559,15 = 4817,78 \ veículos \ por \ dia = 4818 \ veículos \ por \ dia.$$

4.2 DETERMINAÇÃO DO NÚMERO N

O cálculo do número equivalente "N" será utilizado para determinar o quanto o pavimento será solicitado, ou seja, o número de repetições dos eixos do veículo na via em questão. O Manual de Estudos de Tráfego aponta que "[...] as cargas dos veículos causam deflexões nas camadas do pavimento e alteram o estado de tensões e deformações. Cada carga provoca um efeito destrutivo e reduz a vida remanescente do pavimento" (BRASIL, 2006, p. 243).

Figura 7 - Efeito da carga sobre pavimento

EFEITO DA CARGA SOBRE UM PAVIMENTO FLEXÍVEL

Fonte: Brasil (1979).

Para a determinação do valor será necessário informações referente ao volume médio diário anual, a classificação e carregamento da frota e fator de equivalência da carga.

No cenário em questão, a classificação e carregamento da frota serão determinados visando apenas o tráfego de caminhões pesados que entram na Portaria 02 do Porto de Imbituba.

Sendo assim, o número N é calculado pela seguinte equação:

$$N = \frac{365 \cdot F_r \cdot \sum (V_i \cdot F_i)}{F_p}$$

Onde:

- F_r = Fator Climático = 1;
- V_i = Volume de Veículos;
- F_i = Fator de Equivalência de Carga;
- F_p = Fator de Pista.

Para a determinação dos fatores necessários para o cálculo, utilizar-se-á o método USACE (U.S. Army Corps of Engineers), e AASHTO (American Association Standard Highway and Transportion Officials), ambos órgãos do corpo de engenheiros do exército americano.

[...] Os fatores de equivalência da AASHTO baseiam-se na perda de serventia (PSI) e variam com o tipo do pavimento (flexível e rígido), índice de serventia terminal e resistência do pavimento (número estrutural – SN). Eles são diferentes dos obtidos pelo USACE, que avaliaram os efeitos do carregamento na deformação permanente (afundamento nas trilhas de roda) (BRASIL, 2006, p. 244).

O cálculo do Número N e seus valores de composição constam nas tabelas 4, 5 e 6.

Tabela 4 - Valores para composição do Número N

Fator de Equivalência (AASHTO)	7,0
Fator de Equivalência (USACE)	25,00
Fator de Pista	2 (Pista Simples)
Fator Climático	1
Taxa de Crescimento	0,112 = 11,2% ao ano.

Fonte: Elaborado pelo autor (2021).

Tabela 5 - Cálculo Número N (AASHTO)

Ano	Veículos (VMDd)	N anual	N acumulado
2020	505	645137,5	6,45E+05
2021	565	722163,6243	1,37E+06
2022	633	808386,2747	2,18E+06
2023	708	904903,4694	3,08E+06
2024	793	1012944,325	4,09E+06
2025	888	1133884,706	5,23E+06
2026	994	1269264,752	6,50E+06
2027	1112	1420808,484	7,92E+06
2028	1245	1590445,765	9,51E+06
2029	1394	1780336,87	1,13E+07
2030	1560	1992900,005	1,33E+07
2031	1746	2230842,093	1,55E+07
2032	1955	2497193,251	1,80E+07
2033	2188	2795345,378	2,08E+07
2034	2449	3129095,347	2,39E+07
2035	2742	3502693,358	2,74E+07
2036	3069	3920897,066	3,14E+07
2037	3436	4389032,161	3,57E+07
2038	3846	4913060,196	4,07E+07
2039	4305	5499654,505	4,62E+07
2040	4819	6156285,179	5,23E+07

Fonte: Elaborado pelo autor (2021).

Tabela 6 - Cálculo Número N (USACE)

Ano	Veículos (VMDd)	N anual	N acumulado
2020	505	2304062,5	2,30E+06
2021	565	2579155,801	4,88E+06
2022	633	2887093,838	7,77E+06
2023	708	3231798,105	1,10E+07
2024	793	3617658,302	1,46E+07
2025	888	4049588,236	1,87E+07
2026	994	4533088,4	2,32E+07
2027	1112	5074316,016	2,83E+07
2028	1245	5680163,446	3,40E+07
2029	1394	6358345,966	4,03E+07
2030	1560	7117500,018	4,74E+07
2031	1746	7967293,188	5,54E+07
2032	1955	8918547,324	6,43E+07
2033	2188	9983376,349	7,43E+07
2034	2449	11175340,52	8,55E+07
2035	2742	12509619,14	9,80E+07
2036	3069	14003203,81	1,12E+08
2037	3436	15675114,86	1,28E+08
2038	3846	17546643,56	1,45E+08
2039	4305	19641623,23	1,65E+08
2040	4819	21986732,78	1,87E+08

Fonte: Elaborado pelo autor (2021).

4.3 AVALIAÇÃO ESTRUTURAL DO PAVIMENTO EXISTENTE

A avaliação estrutural do pavimento existente seguirá os procedimentos que constam no manual 11 de ano 1979 do Departamento Nacional de Estradas de Rodagem. Para tal, usa-se os valores de número N obtidos a fim de calcular a vida restante do pavimento e dimensionar os reforços necessários para o desempenho satisfatório da via.

Conforme o manual em questão, a vida útil do pavimento é dividida em três fases, distintas, conforme consta na figura 8.

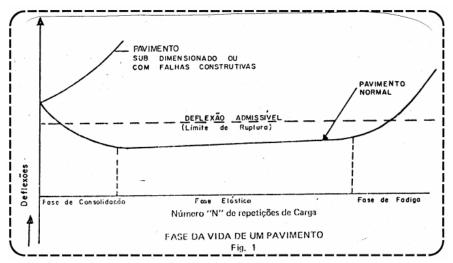


Figura 8 - Fase da vida de um pavimento

Fonte: Brasil (1979).

A fase de consolidação se refere ao período após a execução do pavimento, caracterizada por um decréscimo desacelerado do valor da deflexão, decorrente da consolidação adicional proporcionada pelo tráfego nas camadas do pavimento. A próxima fase, chamada de elástica, onde o valor da deflexão se mantém aproximadamente constante ou cresce em uma proporção lenta, definindo a vida útil do pavimento. A fase final, chamada de fase de fadiga, refere-se ao momento em que o valor deflexão cresce em ritmo acelerado, causado pelos efeitos da fadiga, sendo nesta fase que se apresentam as trincas, fissuras e deformações (BRASIL, 1979).

Deve-se buscar em um pavimento, a maior vida útil dentro dos limites econômicos e construtivos. A vida útil tende a diminuir conforme cresce o número de solicitações do pavimento, ou seja, o número N. O procedimento DNER 011/79 aponta como fatores que diminuem a vida útil do pavimento as falhas da fundação, deficiências do subleito, deficiências da drenagem e projeto e as falhas construtivas.

O trecho analisado será a VP2 do Porto de Imbituba, via interna de 933,00 metros de extensão total, sendo a via principal de acesso de caminhões da área portuária. A escolha dessa via se dá pelo fato de nela estar localizada as balanças, onde as manobras de frenagem e aceleração em baixa velocidade dos caminhões é o cenário que causa maior impacto no pavimento. A via será dividida em segmentos homogêneos de 200 metros de extensão, e a análise das deflexões consta na tabela 7.

- **Trecho 01 (200 m)** Estacas 01 a 010;
- **Trecho 02 (200 m)** Estacas 011 a 020;

- **Trecho 03 (200 m)** Estacas 021 a 030;
- **Trecho 04 (200 m)** Estacas 031 a 040;
- **Trecho 05 (133 m)** Estacas 041 a 044.

Tabela 7 - Análise das deflexões

Trecho	Média das deflexões (x 0,01mm)	Média dos Raios de Curvatura (m)	Desvio Padrão (σ)	Deflexão de Projeto (x 0,01mm)
1	51,58	292,2	14,57	66,15
2	46,91	273,2	14,83	61,74
3	45,49	271,4	12,02	57,51
4	41,23	299,4	8,27	49,50
5	54,33	182,50	4,63	58,96

Fonte: Elaborado pelo autor (2021).

O valor deflexão admissível para pavimento formados por revestimento de concreto betuminoso sobre base granular pode ser obtido através do número N, utilizando o ábaco da figura 9 e a equação logo abaixo. Vale ressaltar que os valores do número N considerados serão os encontrados pelo método USACE.

Figura 9 - Deflexão admissível

Fonte: Brasil (1979).

 $\log D_{adm} = 3.01 - 0.176 \log N$

 $D_{adm} = 77,68 \ x \ 0,01mm$

A avaliação estrutural se dará conforme as indicações presentes na tabela 8.

Tabela 8 - Critérios para avaliação estrutural

Hipótese	Dados Deflectométricos obtidos	Qualidade Estrutural	Necessidade de Estudos Complementares	Critério para Cálculo de Reforço	Medidas Corretivas
I	$Dp \le D_{adm}$ $R \ge 100$	воа	NÃO		Apenas correções de superfície
т ²	Dp > Dadm	Se Dp ≤ 3 Dadm REGULAR	NÃO	Deflectrométrico	Reforço
i ,	R ≥ 100	Se Dp > 3 Dadm MÁ	SIM	Deflectométrico e Resistência	Reforço ou Reconstrução
ш	Dp ≤ D _{adm} R < 100	REGULAR PARA MÁ	SIM	Deflectométrico e Resistência	Reforço ou Reconstrução
IV	Dp > Dadm R < 100	MÁ	SIM	Resistência	Reforço ou Reconstrução
v	_	MÁ O pavimento apresenta d e f o r m a ç ö e s permanentes e rupturas plásticas generalizadas (IGG>180).	SIM	Resistência	Reconstrução

Fonte: Brasil (1979).

Conforme a avalição estrutural presente na tabela 9, pode-se concluir que o pavimento ainda não atingiu fase de fadiga, visto que os valores de deflexão admissíveis se encontram abaixo das deflexões de projeto, porém próximo, indicando a aproximação do fim da fase elástica do pavimento.

Tabela 9 - Avaliação estrutural

Trecho	Deflexão de Projeto (x 0,01mm)	Deflexão admissível atualmente (x 0,01mm)	Situação	Medidas
1	66,15	77,68	BOA	Correções Superficiais
2	61,74	77,68	BOA	Correções Superficiais
3	57,51	77,68	BOA	Correções Superficiais
4	49,50	77,68	BOA	Correções Superficiais
5	58,96	77,68	BOA	Correções Superficiais

Fonte: Elaborado pelo autor (2021).

A fim de determinar a vida restante do pavimento, observa-se os valores de deflexão de projeto obtidos e junto com as informações presentes do número N para o ano de 2023, é visto que a deflexão admissível se torna menor que a deflexão de projeto nos trechos 1 e 2, com valores próximos nos trechos 3 e 5, apontando a necessidade de reforço ou reconstrução.

4.4 AVALIAÇÃO DOS RESULTADOS

Um outro ponto a ser destacado, é sobre as condições atuais que o pavimento estudado se encontra. Como as verificações de deflexão e vida útil se mostrarem suficientes, ainda assim, patologias se mostram recorrentes.

É importante destacar as ações que as condições ambientais portuárias possuem sobre a pavimentação. Conforme Balbo (2007), o cimento asfáltico é composto principalmente de alcanos, bases de nitrogênio e frações de asfalteno, que constituem a parte sólida e os maltenos, que conferem a parte oleosa e são responsáveis pelas propriedades plásticas e de viscosidade do produto. Estes constituintes sofrem alterações químicas irreversíveis ao longo do tempo, seja por fatores externos de natureza climática como a radiação solar e chuvas ácidas, ou por fatores secundários como a presença de águas sulfatadas, derramamento de produtos, óleos combustíveis e lubrificantes de veículos

Frequentemente nota-se na área portuária o depósito de materiais nas vias que acabam por cair durante as operações de carga, descarga e transporte. O derramamento de óleo provoca a oxidação dos asfaltos dos revestimentos, processo que possui como resultado a geração de resina, que por sua vez, sofre oxidação resultando em asfaltenos. O aumento da taxa de asfalteno altera as características do asfalto, tornando-a viscoso e frágil. A porção de maltenos presentes na composição também sofrem com o processo de oxidação, transformando-os em substâncias de natureza similar aos asfaltenos, gerando por fim, um revestimento frágil e quebradiço.

Uma outra hipótese que pode explicar as patologias no revestimento é a de contaminação do material devido ao bombardeamento de finos.

De acordo com Balbo (2007), o fenômeno de bombardeamento de finos ocorre quando as camadas inferiores se encontram saturadas, e com a passagem de cargas sobre o pavimento a água presente em excesso tende a ser lançada em sentido ascensional, carregando com ela partículas finas do solo que se posicionam entre os grãos do material granular. O processo faz com que a camada sofra elevada deformação, gerando afundamentos, fissuração e

desagregação, formando buracos, pois provoca uma diminuição na capacidade dos agregados suportarem as cargas pelo atrito entre os grãos.

Devido as condições agressivas mencionadas anteriormente, durante o cálculo do número N foi adotado um fator de equivalência elevado, a fim de sanar estes cenários que não estão previstos em norma.

5 PAVIMENTOS DE CONCRETO

Buscando a melhora das condições de uso observados em relação ao uso dos pavimentos flexíveis, o uso de pavimentos rígidos se mostra como uma opção viável para a situação observada no Porto de Imbituba.

É destacado por Balbo (2009) o desempenho superior dos pavimentos de concreto em comparação ao pavimento asfáltico, pois não sofrem com as patologias de afundamentos em trilhos de roda e podem resistir a qualquer quantidade de repetições de eixos pesados, quando observado o dimensionamento correto, bem como os elementos construtivos como a espessura de base, das juntas transversais e longitudinais e propriedades do concreto.

O desempenho satisfatório da camada de rolagem constituída por placas de concreto pode ser observado no trecho norte de Imbituba, mostrando ser propícia para uso nas condições semelhantes dentro da área portuária.

Observa-se na tabela 10 abaixo, os principais tipos de pavimentos de concreto e suas características básicas.

Tabela 10 - Tipos de pavimentos de concreto

Denominação	Principais características estruturais e construtivas
Pavimento de Concreto Simples (PCS)	Concreto de alta resistências em relação a concretos estruturais para edifícios, que combate os esforços de tração na flexão gerados na estrutura, por não possuir armaduras para isso. A presença de juntas serradas de contração (para controle da retração) pouco espaçadas é marcante.
Pavimento de Concreto Armado (PCA)	Concreto que trabalha em regime de compressão no banzo comprimido, mas sem sofrer esmagamento. No banzo tracionado estão as armaduras resistentes aos esforços de tração, o que faz dele um concreto convencional armado. Há juntas serradas, porém de modo mais espaçado que no PCS.
Pavimento de Concreto com Armadura Contínua (PCAC)	Concreto que tolera a fissuração de retração transversalmente. À armadura contínua, colocado pouco acima da linha neutra, na seção transversal da placa, cabe a tarefa de manter as faces fissuras fortemente unidas. Não se executam juntas de contração nesse pavimento, com exceção da construtivas.
Pavimento de Concreto Protendido (PCPRO)	Concreto que permite placas de grandes dimensões planas e menores espessuras, trabalhando em regime elástico.
Pavimento de Concreto Pré- moldado (PCPM)	As placas de concreto pré-moldadas atendem a necessidade de transporte. São normalmente fabricadas sob medida, com elevado controle e precisão, para a rápida substituição de placas em pavimentos de concreto deteriorados.

Continua

Continuação			
Whitetopping (WT)	Nova camada de revestimento de um antigo pavimento asfáltico de concreto, que poderá ser em PCS, PCA, PCAC, PCPRO ou PCPM, de acordo com os respectivos padrões construtivos dessas soluções.		
Whitetopping Ultradelgado (WTUD)	Camada delgada de concreto, de elevada resistência, lançada sobre a antiga superfície asfáltica fresada, que apresentada placas de pequenas dimensões e trabalha por flexão e deflexão. As juntas de contração são serradas com espaçamento pequenos e, em geral, utiliza-se concreto de alta resistência.		

Fonte: Balbo (2009, adaptado pelo autor).

Devido as condições do pavimento existente se encontrarem em condições aceitáveis, trabalha-se a hipótese da execução do Pavimento *Whitetopping*, a fim de aproveitar a estrutura existente e evitar os gastos e as intervenções que a demolição do revestimento asfáltico atual envolveria. O Manual de Pavimentos Rígidos indica este método como uma alternativa para pavimentos flexíveis que estejam propensos a se deteriorar mais rapidamente sob tráfego pesado ou em meio ambiente agressivo (BRASIL, 2005). Os procedimentos para a construção do Pavimento *Whitetopping* constam na especificação de serviço 068/2004, do DNIT.

A ABCP destaca o melhor desempenho e durabilidade, com custo menor dos pavimentos rígidos. Um estudo abrangente realizado pela associação aponta que o concreto se mostra 16% mais barato que o asfalto. Outros pontos positivos apontados no estudo são a economia de até 20% da frota circulante, tempo de execução menor, maior segurança em frenagens e melhor refletância de luz permitindo menos uso de postes. Observa-se também, que após o fim da sua vida útil o pavimento é totalmente reciclável (ASSOCIAÇÃO..., 2015).

5.1 DIMENSIONAMENTO DO REFORÇO

O dimensionamento do reforço composta pela camada de pavimento rígido de concreto segue as especificações constantes no Manual de Pavimentos Rígidos do DNIT/IPR número 74 de 2005, utilizando do método de dimensionamento da *Portland Cement Association* (PCA) de 1984 (BRASIL, 2005). Conforme consta no manual, o processo consiste em determinar o módulo de reação que o pavimento existente produzirá, chamado de coeficiente de recalque e em seguida dimensiona-se a camada de concreto armado como um novo pavimento rígido. Desta forma, o pavimento existente cumprirá a função de sub-base, devendo este receber um preparo prévio com nivelamento e fresagem de 2 a 7 cm aproximadamente.

Inicialmente, determina-se o valor do coeficiente de recalque a partir dos valores da deflexão média do trecho obtidas pelo ensaio de Viga Benkelman. O valor corresponde a reação de recalque do subleito e sub-base do pavimento existente. No Manual de Pavimentos Rígidos, é sugerido a obtenção do valor do coeficiente de recalque usando os valores de CBR do solo (BRASIL, 2005). Devido à ausência do valor de CBR, o presente estudo utiliza-se as correlações entre as deflexões obtidas pela Viga Benkelman, que se mostram satisfatórias, de acordo com Suzuki *et al.* (1988), conforme a gráfico 8.

Gráfico 8 - Correlação entre o coeficiente de recalque e deflexão Benkelman

Fonte: Suzuki et al. (1988).

O valor obtido pelo gráfico 8 para o coeficiente de recalque do trecho consta na tabela 11 a seguir.

Tabela 11 - Coeficiente de recalque (K)

Deflexão de Projeto	Coeficiente de recalque (MPa/m)			
(x 0,01 mm)	K_{min}	$K_{m\'edio}$	$K_{m\acute{a}x}$	
58,77	102	131	160	

Fonte: Elaborado pelo autor (2021).

O concreto utilizado deverá possuir resistência característica à tração na flexão em 4,5 MPa aos 14 dias.

Para o fator de segurança de cargas será utilizado o valor de 1,2 referente a situação de tráfego ininterrupto ou de grande volume de caminhões pesados.

A distribuição do tráfego será feita com os veículos de projeto conforme tabela 12 abaixo. Os valores de incidência foram dimensionados para dividir o tráfego para os diferentes tipos de veículos de projeto, buscando um equilíbrio entre as faixas.

Tabela 12 - Veículos de projeto

Tipo de veículo	Descrição	Legenda	Incidência
Caminhão Médio – 2C	Eixo de roda simples	ESRS	30 %
	Eixo de roda dupla	ESRD	25 %
Caminhão Pesado – 3C	Eixo de roda simples	ESRS	15 %
	Eixo tandem duplo	ETD	15 %
Dahamaa Cami mhamaa 20	Eixo de roda simples	ESRS	5 %
Reboques e Semi-reboques – 3C	Eixo de roda dupla	ESRD	5 %
	Eixo tandem triplo	ETT	5 %

Fonte: Elaborado pelo autor (2021).

A tabela 13 abaixo descreve a distribuição do tráfego com o número de repetições por eixo de carga.

Tabela 13 - Distribuição do tráfego

		Carga por	Veículos por dia			Número
Tipo de veículo	Tipo de eixo eixo (t)		2020	2040	Vmd	de repetições
Caminhão	ESRS	6,00	152	1.446	799	5.832.700
$M\'{e}dio - 2C$	ESRD	10,00	126	1.204	665	4.854.500
Caminhão Pesado – 3C	ESRS	6,00	76	723	400	2.920.000
	ETD	17,00	76	723	400	2.920.000
Reboques e Semi-reboques – 3C	ESRS	6,00	25	241	133	970.900
	ESRD	10,00	25	241	133	970.900
	ETT	25,50	25	241	133	970.900

Fonte: Elaborado pelo autor (2021).

Segue na tabela 14 o resumo por eixo e carga das repetições.

Tabela 14 - Repetições pelo tipo de eixo

Eixo	Carga	Repetições
Simples	6,00	9.723.600
Simples	10,00	5.825.400
Duplo	17,00	2.920.000
Triplo	25,50	970.900

Fonte: Elaborado pelo autor (2021).

As faixas de carga para o dimensionamento usadas constam na tabela 15 abaixo.

Tabela 15 - Faixas de carga para dimensionamento

Eixo	Carga (tf)	Repetições
	5,4	1.944.720
	6,0	3.889.440
	6,6	3.403.260
Simples	7,2	486.180
Simples	9,0	1.165.800
	10,0	2.330.160
	11,0	2.038.890
	12,0	291.270
	15,3	584.000
Duplo	17,0	1.168.000
Duplo	18,7	1.022.000
	20,4	146.000
	22,9	194.180
Triplo	25,5	388.360
ттрю	28,0	339.815
	30,0	48.545

Fonte: Elaborado pelo autor (2021).

O dimensionamento será feito considerando um pavimento sem acostamento de concreto e fazendo o uso de juntas transversais com barra de transferência. A escolha de usar juntas transversais com barra de transferência faz sentido considerando o tráfego pesado previsto para o Porto. O fator de erosão presente já mencionado anteriormente é aliviado quando

utilizado as barras de transferência, pois minimiza a formação de degraus nas bordas longitudinais da placa onde manifesta-se as deformações verticais. A possibilidade de se executar acostamento diminui consideravelmente a erosão do pavimento, visto que as cargas do tráfego se posicionam mais longe dos bordos, fazendo decrescer as tensões.

A espessura tentativa do pavimento de concreto será de 25 cm, considerando também as possibilidades construtivas do local.

O dimensionamento segue obtendo as tensões equivalentes para os eixos simples, tandem duplo e tandem triplo adotados no projeto, conforme os quadros 1 e 2 a seguir.

Quadro 1 - Tensões equivalentes eixos simples e duplos (sem acostamento de concreto)

					k	- Coefic	iente de	recalque	(MPa/n	n)				
Espessura da Placa (cm)	2	.0	4	10	6	0	8	0	10	00	1	50	18	80
	ES	ETD	ES	ETD	ES	ETD	ES	ETD	ES	ETD	ES	ETD	ES	ETD
12	4,30	3,56	3,78	3,01	3,51	2,81	3,31	2,68	3,17	2,57	2,91	2,43	2,74	2,35
13	3,84	2,33	3,38	2,73	3,14	2,53	2,97	2,40	2,84	2,30	2,61	2,16	2,46	2,08
14	3,46	2,96	3,05	2,49	2,83	2,29	2,68	2,16	2,56	2,08	2,37	1,94	2,23	1,85
15	3,14	2,72	2,27	2,29	2,57	2,09	2,44	1,97	2,33	1,88	2,16	1,75	2,04	1,67
16	2,87	2,52	2,53	2,12	2,35	1,93	2,23	1,81	2,13	1,73	1,97	1,60	1,87	1,52
17	2,63	2,35	2,33	1,97	2,16	1,79	2,05	1,67	1,96	1,60	1,81	1,47	1,72	1,39
18	2,43	2,20	2,15	1,84	1,99	1,66	1,89	1,55	1,81	1,48	1,68	1,36	1,59	1,28
19	2,25	2,07	1,99	1,72	1,85	1,56	1,75	1,45	1,68	1,38	1,56	1,26	1,48	1,19
20	2,10	1,95	1,85	1,62	1,72	1,46	1,64	1,36	1,56	1,29	1,45	1,18	1,38	1,11
21	1,96	1,85	1,73	1,53	1,61	1,38	1,52	1,29	1,46	1,22	1,36	1,11	1,28	1,04
22	1,83	1,75	1,62	1,45	1,50	1,31	1,42	1,22	1,37	1,15	1,28	1,05	1,20	0,98
23	1,72	1,67	1,52	1,38	1,41	1,24	1,33	1,15	1,28	1,09	1,20	0,99	1,13	0,92
24	1.62	1.59	1.43	1.31	1.33	1.18	1.25	1,10	1.21	1.04	1.13	0.94	1.07	0.88
25	1,53	1,52	1,35	1,25	1,26	1,12	1,19	1,05	1,14	0,99	1,07	0,89	1,01	0,83
26	1,45	1,45	1,28	1,20	1,19	1,07	1,13	1,00	1,08	0,94	1,01	0,85	0,95	0,80
27	1,83	1,39	1,21	1,15	1,13	1,03	1,07	0,95	1,03	0,90	0,95	0,81	0,90	0,76
28	1,31	1,34	1,15	1,10	1,07	0,99	1,02	0,91	0,98	0,86	0,90	0,78	0,86	0,73
29	1,25	1,29	1,10	1,06	1,02	0,95	0,97	0,88	0,93	0,83	0,86	0,75	0,82	0,69
30	1,19	1,24	1,05	1,02	0,97	0,91	0,92	0,85	0,89	0,80	0,82	0,72	0,78	0,66
31	1,13	1,20	1,00	0,99	0,93	0,88	0,88	0,81	0,84	0,77	0,78	0,69	0,74	0,64
32	1,09	1,16	0,96	0,95	0,89	0,85	0,84	0,78	0,80	0,74	0,75	0,67	0,71	0,62
33	1,04	1,12	0,92	0,92	0,85	0,82	0,80	0,76	0,77	0,71	0,72	0,64	0,68	0,60
34	1,00	1,08	0,88	0,89	0,81	0,79	0,77	0,73	0,73	0,69	0,69	0,62	0,66	0,58

Fonte: Brasil (2005).

Interpolando os valores encontrados no quadro 1 para os dados de projeto obtém-se tensão equivalente de eixo simples de 1,09 MPa/m e tensão equivalente de eixo tandem duplo de 0,928 MPa/m.

Quadro 2 - Tensões equivalentes para eixos triplos (sem acostamento de concreto)

			k - Coeficiente de	recalque (MPa/m)		
Espessura da Placa (cm)	20	40	60	80	140	180
	ETT	ETT	ETT	ETT	ETT	ETT
12	2,60	2,30	2,20	2,14	2,08	2,07
13	2,35	2,04	1,93	1,87	1,80	1,78
14	2,15	1,83	1,72	1,65	1,58	1,55
15	1,99	1,67	1,55	1,48	1,40	1,37
16	1,85	1,54	1,41	1,34	1,25	1,23
17	1,73	1,43	1,30	1,23	1,14	1,11
18	1,62	1,34	1,21	1,14	1,04	1,01
19	1,53	1,26	1,13	1,06	0,96	0,92
20	1,45	1,19	1,07	0,99	0,89	0,85
21	1,37	1,13	1,01	0,93	0,83	0,79
22	1,30	1,07	0,95	0,88	0,78	0,74
23	1,24	1,02	0,91	0,84	0,73	0,70
24	1.18	0.97	0.87	0.80	0.69	0.66
25	1,13	0,93	0,83	0,76	0,66	0,62
26	1,07	0,89	0,79	0,73	0,63	0,59
27	1,02	0,86	0,76	0,70	0,60	0,57
28	0,98	0,82	0,73	0,67	0,58	0,54
29	0,93	0,79	0,71	0,65	0,55	0,52
30	0,89	0,76	0,68	0,63	0,53	0,50
31	0,85	0,73	0,66	0,60	0,51	0,48
32	0,81	0,70	0,63	0,58	0,50	0,46
33	0,77	0,68	0,61	0,56	0,48	0,45
34	0,73	0,65	0,59	0,55	0,46	0,43

Fonte: Brasil (2005).

Interpolando os valores encontrados no quadro 2 para os dados de projeto obtém-se uma tensão equivalente para eixos triplos de 0,675 Mpa/m.

O fator de erosão para pavimento com barras de transferência sem acostamento de concreto constam nos quadros 3 e 4.

Quadro 3 - Fator de erosão para eixos simples e duplos (sem acostamento de concreto)

					k	- Coefic	iente de	recalque	e (MPa/n	n)				
Espessura da Placa (cm)	2	0	4	0	6	0	8	0	10	00	1	50	2	00
	ES	ETD	ES	ETD	ES	ETD	ES	ETD	ES	ETD	ES	ETD	ES	ETD
12	3,51	3,61	3,50	3,57	3,49	3,54	3,48	3,52	3,48	3,51	3,47	3,49	3,45	3,47
13	3,41	3,53	3,39	3,48	3,39	3,45	3,38	3,43	3,38	3,41	3,37	3,39	3,35	3,37
14	3,32	3,45	3,30	3,39	3,29	3,36	3,28	3,34	3,28	3,33	3,27	3,30	3,25	3,28
15	3,23	3,45	3,21	3,31	3,20	3,28	3,19	3,26	3,19	3,24	3,18	3,22	3,16	3,20
16	3,15	3,37	3,12	3,24	3,12	3,21	3,10	3,18	3,10	3,17	3,09	3,14	3,08	3,12
17	3,07	3,30	3,05	3,17	3,04	3,14	3,02	3,11	3,02	3,10	3,01	3,07	3,00	3,04
18	2,99	3,24	2,97	3,11	2,96	3,07	2,95	3,05	2,94	3,03	2,93	3,00	2,92	2,97
19	2,93	3,18	2,90	3,05	2,89	3,01	2,88	2,98	2,87	2,97	2,86	2,93	2,85	2,91
20	2,86	3,12	2,83	3,00	2,83	2,95	2,81	2,92	2,80	2,91	2,79	2,87	2,79	2,84
21	2,80	3,06	2,77	2,93	2,76	2,89	2,74	2,86	2,74	2,85	2,73	2,81	2,72	2,78
22	2,74	3,01	2,71	2,88	2,70	2,84	2,68	2,81	2,68	2,80	2,67	2,76	2,66	2,73
23	2,68	2,96	2,65	2,83	2,64	2,79	2,62	2,76	2,62	2,74	2,61	2,70	2,59	2,67
24	2,63	2,91	2,60	2,78	2,59	2,74	2,57	2,71	2,56	2,69	2,55	2,65	2,54	2,62
25	2,58	2,87	2,54	2,74	2,54	2,69	2,52	2,67	2,51	2,65	2,50	2,60	2,49	2,57
26	2,53	2,83	2,50	2,70	2,49	2,65	2,47	2,62	2,46	2,61	2,45	2,56	2,44	2,53
27	2,48	2,79	2,45	2,66	2,44	2,61	2,42	2,58	2,41	2,57	2,40	2,52	2,39	2,49
28	2,43	2,75	2,40	2,63	2,39	2,57	2,37	2,54	2,37	2,53	2,35	2,48	2,34	2,45
29	2,39	2,72	2,36	2,59	2,35	2,54	2,33	2,51	2,32	2,49	2,31	2,44	2,30	2,41
30	2,43	2,69	2,31	2,56	2,30	2,50	2,28	2,47	2,28	2,45	2,26	2,41	2,25	2,37
31	2,30	2,65	2,27	2,52	2,26	2,47	2,24	2,43	2,24	2,43	2,22	2,37	2,21	2,34
32	2,26	2,62	2,23	2,49	2,22	2,43	2,20	2,40	2,19	2,38	2,18	2,33	2,17	2,30
33	2,22	2,59	2,19	2,46	2,18	2,40	2,16	2,37	2,15	2,35	2,14	2,30	2,13	2,27
34	2,18	2,56	2,15	2,43	2,14	2,37	2,12	2,33	2,12	2,32	2,10	2,27	2,09	2,24

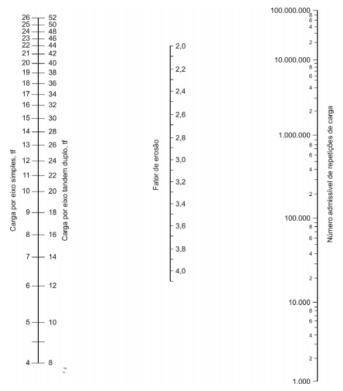
Fonte: Brasil (2005).

Interpolando os valores encontrados no quadro 3 para os dados de projeto obtém-se um fator de erosão para eixos simples de 2,504 e para eixos duplos de 2,619.

Quadro 4 - Fator de erosão para eixos triplos (sem acostamento de concreto)

			k - Coeficiente de	recalque (Mpa/m)		
Espessura da Placa (cm)	20	40	60	80	140	180
Г	ETT	ETT	ETT	ETT	ETT	ETT
12	3,68	3,60	3,56	3,52	3,45	3,40
13	3,60	3,51	3,47	3,44	3,37	3,33
14	3,53	3,43	3,39	3,36	3,29	3,26
15	3,47	3,36	3,31	3,28	3,22	3,19
16	3,41	3,30	3,25	3,21	3,15	3,12
17	3,35	3,24	3,19	3,15	3,08	3,05
18	3,30	3,19	3,13	3,09	3,02	2,99
19	3,25	3,14	3,08	3,04	2,96	2,93
20	3,21	3,09	3,03	2,99	2,91	2,88
21	3,16	3,05	2,99	2,94	2,86	2,83
22	3,12	3,01	2,94	2,90	2,82	2,78
23	3,08	2,97	2,90	2,86	2,77	2,74
24	3,05	2,93	2,86	2,82	2,73	2,69
25	3,01	2,89	2,83	2,78	2,69	2,65
26	2,98	2,86	2,79	2,74	2,66	2,62
27	2,94	2,82	2,76	2,71	2,66	2,58
28	2,91	2,79	2,72	2,68	2,59	2,55
29	2,88	2,76	2,69	2,65	2,55	2,51
30	2,85	2,73	2,66	2,62	2,52	2,48
31	2,82	2,70	2,63	2,59	2,49	2,45
32	2,80	2,68	2,61	2,56	2,46	2,42
33	2,77	2,65	2,58	2,53	2,44	2,40
34	2,74	2,62	2,55	2,50	2,41	2,37

Fonte: Brasil (2005).


Interpolando os valores encontrados no quadro 4 para os dados de projeto obtém-se um fator de erosão para eixos triplos de 2,70

Os valores dos números de repetições admissíveis para os valores de fadiga e erosão são obtidos pelos ábacos dos gráficos 9 e 10 abaixo.

Gráfico 9 - Análise de fadiga - número de repetições admissíveis

Fonte: Brasil (2005).

Gráfico 10 - Análise de erosão - número de repetições (sem acostamento de concreto)

Fonte: Brasil (2005).

O fator de fadiga é obtido através do valor da tensão equivalente divido pela resistência característica à tração na flexão.

O dimensionamento completo para fadiga e erosão consta na tabela 16 e quadro 5 a seguir.

Tabela 16 - Dados de dimensionamento

Espessura	25 cm
Coeficiente de recalque (k)	131 MPa /m
Resistência característica à tração na flexão	4,5 MPa
Juntas com Barra de Transferência	Sim
Acostamento de Concreto	Sim
Período de Projeto	20 anos
Fator de segurança de cargas (FSC)	1,2
Fator de Fadiga (ES)	0,24
Fator de Fadiga (ETD)	0,21
Fator de Fadiga (ETT)	0,15

Fonte: Elaborado pelo autor (2021).

Quadro 5 - Dimensionamento de pavimento de concreto

Cargas	Cargas por	nº de	Análise do	e Fadiga	Análise de	Erosão
por eixo	eixo x FSC	repetições	nº de	Consumo	nº de	Danos por
(tf)	(tf)	previstas	repetições	de fadiga	repetições	erosão
(11)	(u)	previstas	admissíveis	(%)	admissíveis	(%)
	Eixo simples		Fator de Fa	diga = 0,24	Fator de Eros	$\tilde{sao} = 2,504$
5,4	6,48	1.944.720	ilimitado	-	ilimitado	-
6,0	7,2	3.889.440	ilimitado	-	ilimitado	-
6,6	7,92	3.403.260	ilimitado	-	ilimitado	-
7,2	8,64	486.180	ilimitado	-	ilimitado	-
9,0	10,8	1.165.800	ilimitado	-	79.000.000	1,47%
10,0	12,0	2.330.160	ilimitado	-	24.000.000	9,71%
11,0	13,2	2.038.890	ilimitado	-	10.500.000	19,42%
12,0	14,4	291.270	ilimitado	-	6.900.000	4,22%
<u>E</u>	ixo tandem du	ı <u>plo</u>	Fator de Fa	diga = 0,21	Fator de Eros	são = 2,619
15.3	18,36	584.000	ilimitado	-	82.000.000	0,71%
17,0	20,4	1.168.000	ilimitado	-	30.000.000	3,89%
18,7	22,44	1.022.000	ilimitado	-	14.000.000	7,3%
20,4	24,48	146.000	ilimitado	-	7.100.000	2,06%
<u>E</u>	ixo tandem tri	i <u>plo</u>	Fator de Fa	diga = 0,15	Fator de Ero	$s\tilde{a}o = 2,70$
22,9	27,48	194.180	ilimitado	-	27.000.000	0,72%
25,5	30,6	388.360	ilimitado	-	10.500.000	3,70%
28,0	33,6	339.815	ilimitado	-	6.800.000	4,99%
30,0	36,0	48.545	ilimitado	-	4.000.000	1,22%
L	1		Total	0%	Total	57,41%

Fonte: Elaborado pelo autor (2021).

Verifica-se através do quadro 5 que o valor que analisa a fadiga do pavimento mostrase suficiente durante a vida útil de projeto. Quanto a análise da erosão, verifica-se que a espessura de 25 cm projetada é suficiente para resistir a erosão. Conforme o Manual de Pavimentos Rígidos do DNIT, os valores mais próximos de 100% indicam um dimensionamento correto, onde valores próximos de 0% para erosão indicam uma estrutura superdimensionada (BRASIL, 2005).

6 CONCLUSÃO

O presente trabalho teve como objetivo a avaliação das condições do pavimento asfáltico atualmente em uso pelo Porto de Imbituba, buscando fornecer informações pertinentes acerca da vida útil e das possíveis melhorias nessa estrutura usada todos os dias do ano ininterruptamente.

O desempenho satisfatório das vias internas é uma condição de interesse tanto dos usuários quanto da administração portuária, visto que um pavimento adequado traz conforto àqueles que fazem a saída e entrada das cargas que movimentam as operações ao mesmo tempo que gera economia quando não se necessita correções e melhorias paliativas, fornecendo condições de investimento em outros setores do Porto.

As informações obtidas através do ensaio de Viga Benkelman apontaram que a vida útil do pavimento ainda se encontra em fase elástica, porém próximo de entrar em sua fase final de vida, necessitando de manutenção e melhorias constantes. Essa condição, juntamente ao tráfego pesado e o ambiente agressivo, destaca a substituição do pavimento asfáltico por uma alternativa mais apropriada, utilizando os pavimentos rígidos de concreto. O pavimento rígido de concreto supre as falhas do pavimento asfáltico existente, demandando menor manutenção e gastos após sua execução.

A execução da técnica de *whitetopping* se mostra como uma opção devido a sua facilidade de execução, não necessitando a remoção do revestimento asfáltico existente pois a camada existente serve como a fundação do pavimento de concreto a ser instalado, fato esse que se mostra pertinente por não gerar gastos com a demolição e diminuir as perturbações das operações diárias, diferente de outros métodos construtivos.

Visando o detalhamento mais preciso e um futuro projeto de intervenção das vias existentes, sugere-se um detalhamento da composição do tráfego bem como o levantamento topográfico das estradas, a fim de propor um projeto geométrico adequado e o levantamento quantitativo e financeira que a execução demandaria.

REFERÊNCIAS

AGÊNCIA NACIONAL DE TRANSPORTES AQUAVIÁRIOS (Brasil). **Anuário Estatístico 2019**. 2019. Disponível em: http://portal.antaq.gov.br/wp-content/uploads/2020/02/Anu%C3%A1rio-2019-vFinal-revisado.pdf. Acesso em: 4 maio 2021.

AGÊNCIA NACIONAL DE TRANSPORTES AQUAVIÁRIOS (Brasil). **Resolução nº 2969** - **ANTAQ, de 4 de julho de 2013**. 2013. Disponível em:

https://www.abtp.org.br/upfiles/legislacao/Resolucao-Antaq-2969-de-2013.pdf. Acesso em: 4 maio 2021.

ALVARENGA, Henrique. **Cabotagem no Brasil**: importância, benefícios e crescimento. 2019. Disponível em: https://www.tecnologistica.com.br/portal/artigos/79972/cabotagem-no-brasilimportancia-beneficios-e-crescimento. Acesso em: 13 nov. 2020.

ALVARENGA, Henrique. **Matriz de transportes do Brasil a espera dos investimentos.** 2020. Disponível em: https://www.ilos.com.br/web/matriz-de-transportes-do-brasil-a-esperados-investimentos. Acesso em: 13 nov. 2020.

ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND. **Whitetopping em Cinco Passos**. 2015. Disponível em: https://abcp.org.br/imprensa/noticias/whitetopping-em-cinco-passos. Acesso em: 20 maio de 2021.

AZENHA, Catia; PEQUENO, Luis Renato Bezerra. **O Porto do Pecém – CE e as suas relações com o Brasil: definição de uma hinterlândia.** Geo UERJ, Rio de Janeiro, n. 29, p. 44-62, 2016.

BALBO, José Tadeu. **Pavimentação asfáltica:** materiais, projeto e restauração. São Paulo: Oficina de Textos, 2007.

BALBO, José Tadeu. Pavimentos de concreto. São Paulo: Oficina de Textos, 2009.

BEVILAQUA, Rodrigo Altmann. A infraestrutura portuária do Estado de Santa Catarina e o comércio exterior: vantagens e carências. 2012. 78f. Trabalho de Conclusão de Curso - Curso de Graduação em Relações Internacionais, Universidade do Sul de Santa Catarina, Florianópolis, 2012.

BERNUCCI, Liedi Bariani *et al.* **Pavimentação asfáltica, formação básica para engenheiros**. Rio de Janeiro: Petrobrás: ABEDA, 2008.

BRASIL. Presidência da República. **Lei 12.815 (2013), de 5 de junho de 2013.** Nova Lei dos Portos. Brasília: Senado, 2013. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12815.htm. Acesso em: 20 fev. 2021.

BRASIL. Ministério dos Transportes. **Manual de estudos de tráfego**. 2006. Disponível em: http://www1.dnit.gov.br/arquivos_internet/ipr/ipr_new/manuais/manual_estudos_trafego.pdf. Acesso em: 1 dez. 2020.

BRASIL. Ministério dos Transportes. **Manual de pavimentos rígidos**. 2 ed. Rio de Janeiro, 2005. 234p. Disponível em: https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-manuais/vigentes/714_manual_de_pavimentos_rigidos.pdf. Acesso em: 28 maio 2021.

BRASIL. Ministério dos Transportes. **Norma DNER 011/1979 – PRO**: Avaliação Estrutural de Pavimentos Flexíveis. 1979. Disponível em: https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-normas/coletanea-de-normas/procedimento-pro/DNER_PRO_011_79.pdf. Acesso em: 07 nov. 2020.

BRASIL. Ministério dos Transportes. **Norma DNIT 138/2010** – **ES**: Pavimentação – Reforço do subleito - Especificação de serviço. 2010. Disponível em: http://www1.dnit.gov.br/normas/PAV%20Flexiveis%20-%20Reforco%20do%20Subleito.pdf. Acesso em: 07 nov. 2020.

BRASIL. Ministério dos Transportes. **Norma DNIT 172/2016 – ME**: Solos – determinação do índice de suporte Califórnia utilizando amostras não trabalhadas – Método de ensaio. 2016. Disponível em: https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-normas/coletanea-de-normas/metodo-de-ensaio-me/dnit172_2016-me.pdf. Acesso em: 07 nov. 2020.

BRASIL. Ministério da Infraestrutura. **Planejamento portuário**. 2020. Disponível em: https://www.gov.br/infraestrutura/pt-br/assuntos/transporte-aquaviario/planejamento-portuario. Acesso em: 07 jun. 2020.

BRASIL. Presidência da República. **Portaria nº 3, de 7 de janeiro de 2014.** Diário Oficial da União. Brasília: Secretaria de Portos, 2014. Disponível em: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/30049702/do1-2014-01-08-portaria-n-3-de-7-de-janeiro-de-2014-30049695. Acesso em: 10 jan. 2021.

CÂMARA INTERAMERICANA DE TRANSPORTES. **Logística e transporte Vol IV**. Brasília, 2004. Disponível em:

http://citamericas.org/imagens/files/livros/livro_transporte_vol_4.pdf. Acesso em: 17 abr. 2021.

OPERAÇÕES, Setor de. **Dados estatísticos sobre entrada de caminhões no ano de 2019 no Porto de Imbituba**. Imbituba: SCPAR, 2020. 34 p.

OPERAÇÕES, Setor de. Dados estatísticos sobre entrada de caminhões no ano de 2020 no Porto de Imbituba. Imbituba: SCPAR, 2021. 33 p.

GOULARTI FILHO, Alcides. **Melhoramentos, reaparelhamentos e modernização dos portos brasileiros: a longa e constante espera**. Economia e Sociedade, Campinas, v. 16, n. 3 (31), p. 455-489, dez. 2007.

LACERDA, Sander Magalhães. **Navegação de cabotagem: regulação ou política industrial?**. BNDES Setorial, Rio de Janeiro, n. 19, p. 49-66, mar. 2004.

MARQUES, Geraldo Luciano de Oliveira. Pavimentação. Juiz de Fora: UFJF, 2006.

MONIÉ, Frederic; VIDAL, Soraia. Cidades, portos e cidades portuárias na era da integração produtiva. Revista de Administração Pública, Rio de Janeiro, p. 975-995, nov./dez. 2006.

NEU, Márcia Fernandes Rosa. **Os portos do sul do Brasil:** da formação ao século XXI. 2009. 228f. Programa de Pós-graduação em Geografia Humana, Universidade de São Paulo, São Paulo, 2009.

PIZZOLATO, Nélio Domingues; SCAVARDA, Luiz Felipe; PAIVA, Rodrigo. **Zonas de influência portuárias – hinterlands: conceituação e metodologias para sua delimitação**. Gestão & Produção, São Carlos, v. 17, n. 3, p. 553-566, 2010

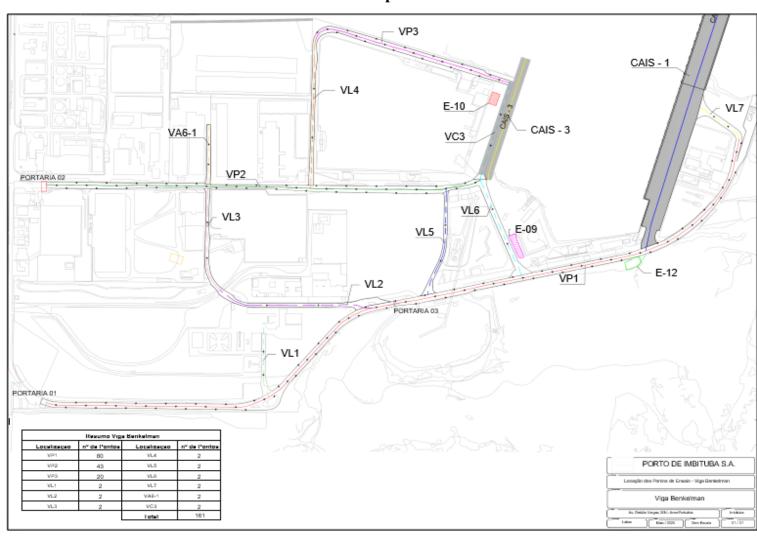
POYER, Maria da Graça; RORATTO, Paulo. **Introdução ao comércio exterior:** livro didático. Palhoça: Unisul Virtual, 2017. 70 p.: il.; 28 cm.

PRESTEX. Conheça os 5 principais modais de transporte de carga no Brasil. 2019. Disponível em: https://www.prestex.com.br/blog/modais-de-transporte-de-carga-no-brasil-conheca-os-5-principais. Acesso em: 07 nov. 2020.

RODRIGUES, Paulo Roberto Ambrosio. Introdução aos sistemas de transporte no Brasil e à logística internacional. São Paulo: Aduaneiras, 2007.

ROSTOVTZEFF, Mikhail Ivanovich. **História de Roma**. São Paulo: Zahar Editora S.A., 1983.

SANTA CATARINA. SCPAR Porto de Imbituba S.A. **Estatísticas**. 2021. Disponível em: https://portodeimbituba.com.br/estatisticas/?ano=2020. Acesso em: 07 nov. 2020.


SANTA CATARINA. SCPAR Porto de Imbituba S.A. 2020. **Plano de desenvolvimento e zoneamento do Porto de Imbituba**. Disponível em:

http://transparencia.portodeimbituba.com.br/wp-content/uploads/2020/08/pdz12.pdf. Acesso em: 07 nov. 2020.

SUZUKI, C C.Y. *el al*. Correlação entre Parâmetros de Deflexão e Coeficientes de Recalque de um pavimento existente. 23ª Reunião Anual de Pavimentação, Florianópolis, SC, out. 1988.

WANKE, Peter; FLEURY, Paulo Fernando. Estrutura e dinâmica do setor de serviços no Brasil: capítulo 12. Brasília: IPEA, 2006.

APÊNDICE

APÊNDICE A — Planta das vias internas e pontos de ensaio do Porto de Imbituba

Fonte: Elaborado pelo autor (2020).

ANEXO

ANEXO A – Ensaio deflectométrico - Porto de Imbituba

LEVANTAMENTO DEFLECTOMÉTRICO - Viga Benkelman

Local: PORTO DE IMBITUBA Data: 03/09/2020

Trecho: Vias Internas Constante da Viga: 2,031
Subtrecho: VP1 Laboratorista: Carlos

					LEITU	RAS EM 1	0 ⁻² mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	Estaca		L ₀	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	<u> </u>
1	1	EIXO	500	488	485	484	483	482	478	44,7	20,3	14,2	12,2	10,2	8,1	128	VP1
2	2	LD	500	485					472	56,9	26,4					103	VP1
3	3	LE	500	487					475	50,8	24,4					118	VP1
4	4	EIXO	500	485					473	54,8	24,4					103	VP1
5	5	LD	500	492	486	483	482	481	478	44,7	28,4	16,2	10,2	8,1	6,1	192	VP1
6	6	LE	500	490					480	40,6	20,3					154	VP1
7	7	EIXO	500	492					481	38,6	22,3					192	VP1
8	8	LD	500	490					476	48,7	28,4					154	VP1
9	9	LE	500	487	485	482	479	477	474	52,8	26,4	22,3	16,2	10,2	6,1	118	VP1
10	10	EIXO	500	486					472	56,9	28,4					110	VP1
11	11	LD	500	488					477	46,7	22,3					128	VP1
12	12	LE	500	489					474	52,8	30,5					140	VP1
13	13	EIXO	500	486	477	475	475	474	472	56,9	28,4	10,2	6,1	6,1	4,1	110	VP1
14	14	LD	500	487					474	52,8	26,4					118	VP1
15	15	LE	500	490					476	48,7	28,4					154	VP1
16	16	EIXO	500	488					476	48,7	24,4					128	VP1
17	17	LD	500	493	487	485	483	481	479	42,7	28,4	16,2	12,2	8,1	4,1	220	VP1
18	18	LE	500	492					480	40,6	24,4					192	VP1
19	19	EIXO	500	487					477	46,7	20,3					118	VP1
20	20	LD	500	490					475	50,8	30,5					154	VP1

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VP1 Laboratorista: Carlos

LEITURAS EM 10-2 mm Bacia de Deformação (x 10-2 mm) RAIO Km/ Ponto Lado D0 D25 D50 D75 D100 D150 Obs. Estaca Lo L₂₅ L₅₀ L₇₅ L₁₀₀ L₁₅₀ LF (Lo-LF) (L25-LF) (L₅₀-L_F) (L₇₅-L_F) (L₁₀₀-L_F) (L₁₅₀-L_F) (m) 21 21 LE 500 488 483 481 480 479 478 44,7 20,3 10,2 6,1 4,1 2,0 128 VP1 22 VP1 22 EIXO 500 489 474 52.8 30.5 140 23 ΙD 500 488 477 46,7 22.3 128 VP1 24 24 ΙF 500 485 475 50,8 20.3 103 VP1 25 25 EIXO 500 486 484 482 480 477 476 48,7 20,3 16.2 12.2 8.1 2,0 110 VP1 26 LD VP1 26 500 487 478 44,7 18,3 118 27 27 LE 500 486 476 48,7 20,3 110 VP1 28 28 EIXO 500 487 476 48,7 22,3 118 VP1 VP1 29 29 LD 500 488 486 482 480 477 474 52,8 28.4 24.4 16.2 12.2 6.1 128 30 30 LE VP1 500 488 475 50,8 26.4 128 31 EIXO 500 487 475 50,8 24,4 118 VP1 32 32 LD 500 490 477 46,7 26,4 154 VP1 33 33 LE VP1 500 488 483 481 480 478 476 48,7 24,4 14.2 10.2 8.1 4,1 128 EIXO VP1 34 34 500 486 474 52.8 24.4 110 35 35 LD 488 473 VP1 500 54,8 30.5 128 36 LE VP1 36 500 489 482 36,6 14,2 140 37 37 EIXO 500 488 485 483 482 482 480 40,6 16,2 10,2 6,1 4,1 4,1 128 VP1 38 LD 500 486 475 50,8 22,3 110 VP1 39 VP1 39 LE 500 488 474 52,8 28.4 128 EIXO 474 52,8 28,4 128 VP1

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VP1 Laboratorista: Carlos

	., ,				LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	Lotada		L ₀	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
41	41	LD	500	488	482	481	480	480	479	42,7	18,3	6,1	4,1	2,0	2,0	128	VP1
42	42	LE	500	487					484	32,5	6,1					118	VP1
43	43	EIXO	500	492					483	34,5	18,3					192	VP1
44	44	LD	500	489					484	32,5	10,2					140	VP1
45	45	LE	500	486	482	480	480	479	477	46,7	18,3	10,2	6,1	6,1	4,1	110	VP1
46	46	EIXO	500	487					475	50,8	24,4					118	VP1
47	47	LD	500	488					475	50,8	26,4					128	VP1
48	48	LE	500	490					478	44,7	24,4					154	VP1
49	49	EIXO	500	484	482	481	480	480	476	48,7	16,2	12,2	10,2	8,1	8,1	96	VP1
50	50	LD	500	490					484	32,5	12,2					154	VP1
51	51	LE	500	491					479	42,7	24,4					171	VP1
52	52	EIXO	500	489					477	46,7	24,4					140	VP1
53	53	LD	500	494	487	485	485	483	479	42,7	30,5	16,2	12,2	12,2	8,1	256	VP1
54	54	LE	500	488					477	46,7	22,3					128	VP1
55	55	EIXO	500	486					474	52,8	24,4					110	VP1
56	56	LD	500	488					478	44,7	20,3					128	VP1
57	57	LE	500	492	486	485	484	484	482	36,6	20,3	8,1	6,1	4,1	4,1	192	VP1
58	58	EIXO	500	489					483	34,5	12,2					140	VP1
59	59	LD	500	488					483	34,5	10,2					128	VP1
60	60	LE	500	487					479	42,7	16,2					118	VP1

Local: PORTO DE IMBITUBA Data: 03/09/2020

Trecho: Vias Internas Constante da Viga: 2,031
Subtrecho: VP1 Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStaca		L ₀	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
61	61	EIXO	500	489	485	484	483	483	480	40,6	18,3	10,2	8,1	6,1	6,1	140	VP1
62	62	LD	500	490					483	34,5	14,2					154	VP1
63	63	LE	500	493					482	36,6	22,3					220	VP1
64	64	EIXO	500	491					484	32,5	14,2					171	VP1
65	65	LD	500	492	488	484	483	482	481	38,6	22,3	14,2	6,1	4,1	2,0	192	VP1
66	66	LE	500	488					484	32,5	8,1					128	VP1
67	67	EIXO	500	494					480	40,6	28,4					256	VP1
68	68	LD	500	490					482	36,6	16,2					154	VP1
69	69	LE	500	490	488	487	487	486	484	32,5	12,2	8,1	6,1	6,1	4,1	154	VP1
70	70	EIXO	500	492					482	36,6	20,3					192	VP1
71	71	LD	500	491					482	36,6	18,3					171	VP1
72	72	LE	500	488					479	42,7	18,3					128	VP1
73	73	EIXO	500	489	486	485	484	484	480	40,6	18,3	12,2	10,2	8,1	8,1	140	VP1
74	74	LD	500	493					486	28,4	14,2					220	VP1
75	75	LE	500	485					476	48,7	18,3					103	VP1
76	76	EIXO	500	490					480	40,6	20,3					154	VP1
77	77	LD	500	494	490	488	488	487	484	32,5	20,3	12,2	8,1	8,1	6,1	256	VP1
78	78	LE	500	489					479	42,7	20,3					140	VP1
79	79	EIXO	500	489					476	48,7	26,4					140	VP1
80	80	LD	500	484	481	478	476	475	472	56,9	24,4	18,3	12,2	8,1	6,1	96	VP1

Local: PORTO DE IMBITUBA Data: 04/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VP2 Laboratorista: Carlos

LEITURAS EM 10-2 mm Bacia de Deformação (x 10-2 mm) RAIO Km/ Ponto Lado D0 D25 D50 D75 D100 D150 Obs. Estaca Lo L₂₅ L₇₅ L₁₅₀ LF (Lo-LF) (L₂₅-L_F) (L₅₀-L_F) (L₇₅-L_F) (L₁₀₀-L_F) (L₁₅₀-L_F) (m) 0 LE 500 491 483 479 476 474 468 65,0 46,7 30,5 22,3 16,2 12,2 171 VP2 2 VP2 EIXO 500 494 487 480 479 476 473 42.7 28.4 14.2 12.2 6.1 256 54.8 2 ΙD 500 491 471 58.9 40.6 171 VP2 3 ΙF 500 498 481 38.6 34.5 769 VP2 5 4 EIXO 500 497 486 28,4 22.3 513 VP2 6 5 LD 479 VP2 500 486 476 475 473 471 58,9 30,5 16,2 10,2 8,1 4,1 110 7 LE 500 496 482 36,6 28,4 385 VP2 8 7 EIXO 500 495 480 40,6 30,5 308 VP2 LD VP2 9 8 500 490 473 54,8 34,5 154 10 9 LE 464 79.2 VP2 500 482 469 466 463 461 42.7 16.2 10.2 6.1 4.1 85 11 10 EIXO 500 478 462 77,2 32,5 70 VP2 12 11 LD 500 471 468 65,0 6,1 53 VP2 13 LE VP2 12 500 495 480 40,6 30,5 308 EIXO VP2 14 13 500 495 488 486 485 484 483 34.5 24.4 10.2 4.1 308 15 14 LD 500 473 36.6 VP2 491 54,8 171 16 LE VP2 15 500 492 473 54,8 38,6 192 17 16 EIXO 500 496 483 34,5 26,4 385 VP2 18 17 LD 500 493 487 483 482 481 478 44,7 30,5 18.3 10,2 6,1 220 VP2 19 LE VP2 18 500 498 484 32.5 28,4 769 19 EIXO 485 30,5 18,3 256 VP2

Local: PORTO DE IMBITUBA Data: 04/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VP2 Laboratorista: Carlos

LEITURAS EM 10-2 mm Bacia de Deformação (x 10-2 mm) RAIO Km/ Ponto Lado D0 D25 D50 D75 D100 D150 Obs. Estaca Lo L₂₅ L₇₅ L₁₀₀ L₁₅₀ LF (Lo-LF) (L₂₅-L_F) (L₅₀-L_F) (L₇₅-L_F) (L₁₀₀-L_F) (L₁₅₀-L_F) (m) 21 20 LD 500 488 479 476 473 471 468 65,0 40,6 22,3 16,2 10,2 6,1 128 VP2 22 LE VP2 21 500 496 481 38.6 30.5 385 22 EIXO 500 496 481 38,6 30.5 385 VP2 24 23 ΙD 500 494 472 56.9 44.7 256 VP2 25 24 LE 500 491 483 479 475 474 470 60,9 42,7 26.4 18.3 10.2 8.1 171 VP2 26 EIXO VP2 25 500 495 488 24,4 14,2 308 27 26 LD 500 493 477 46,7 32.5 220 VP2 28 27 LE 500 494 483 34,5 22,3 256 VP2 EIXO VP2 29 28 500 496 491 488 486 483 40,6 32,5 22.3 16.2 12.2 385 480 6.1 30 LD VP2 29 500 493 476 48.7 34.5 220 30 LE 500 496 477 46,7 38,6 385 VP2 32 31 EIXO 500 497 482 36,6 30.5 513 VP2 33 32 LD VP2 500 492 484 483 482 481 479 42,7 26,4 10.2 8,1 6,1 4,1 192 VP2 34 33 LE 500 494 483 34,5 22.3 256 35 34 EIXO VP2 500 495 485 30.5 20.3 308 36 LD 494 VP2 35 500 489 487 485 484 480 40,6 28,4 18,3 14,2 10,2 8,1 256 37 36 LE 500 493 477 46,7 32,5 220 VP2 37 EIXO 500 491 470 60,9 42.7 171 VP2 39 VP2 38 LD 500 496 481 38,6 30.5 385 39 487 486 486 483 34,5 24,4 12,2 8,1 6,1 6,1 308 VP2

Local: PORTO DE IMBITUBA Data: 04/09/2020

Trecho: Vias Internas Constante da Viga: 2,031
Subtrecho: VP2 Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)		RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150	_		Obs.
	_31404		Lo	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)		(m)	
41	40	EIXO	500	490					471	58,9	38,6						154	VP2
42	41	LD	500	492					475	50,8	34,5						192	VP2
43	42	LE	500	488	480	478	477	476	471	58,9	34,5	18,3	14,2	12,2	10,2		128	VP2
44	43	EIXO	500	494					476	48,7	36,6						256	VP2

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031
Subtrecho: VP3
Laboratorista: Carlos

LEITURAS EM 10-2 mm Bacia de Deformação (x 10-2 mm) RAIO Km/ Ponto Lado D0 D25 D50 D75 D100 D150 Obs. Estaca Lo L₂₅ L₇₅ L₁₀₀ L₁₅₀ LF (Lo-LF) (L25-LF) (L₅₀-L_F) (L₇₅-L_F) (L₁₀₀-L_F) (L₁₅₀-L_F) (m) LE 500 488 481 480 478 477 476 48,7 24,4 10,2 8,1 4,1 2,0 128 VP3 2 2 VP3 EIXO 500 484 472 24.4 96 56.9 3 ΙD 500 472 461 79.2 22.3 55 VP3 4 ΙF 500 478 472 56.9 12.2 70 VP3 5 5 EIXO 500 481 478 475 474 472 470 60,9 22.3 16.2 10.2 8.1 4,1 81 VP3 6 LD 477 67 VP3 6 500 465 71,1 24,4 7 7 LE 500 486 475 50,8 22.3 110 VP3 8 8 EIXO 500 483 472 56,9 22,3 91 VP3 LD VP3 9 9 500 488 481 480 478 477 475 50,8 26.4 12.2 10.2 4.1 128 6.1 10 10 LE VP3 500 494 484 32.5 20.3 256 11 11 EIXO 500 487 474 52,8 26,4 118 VP3 12 12 LD 500 490 475 50,8 30.5 154 VP3 13 LE VP3 13 500 490 485 483 481 480 477 46,7 26,4 16.2 12.2 8.1 6,1 154 EIXO VP3 14 14 500 492 483 34,5 18.3 192 15 15 LD 487 44,7 VP3 500 478 18.3 118 16 LE 487 476 VP3 16 500 48,7 22,3 118 17 17 EIXO 500 485 478 473 472 470 468 65,0 34,5 20,3 10,2 8,1 4,1 103 VP3 18 18 LD 500 482 461 79,2 42,7 85 VP3 19 VP3 19 LE 500 485 475 473 471 469 465 71.1 40.6 20.3 16.2 12.2 8.1 103 20 EIXO 483 463 75,1 40,6 91 VP3

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VL1 Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	_31404		Lo	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	1	EIXO	500	497	491	488	486	484	483	34,5	28,4	16,2	10,2	6,1	2,0	513	VL1
2	3	EIXO	500	497	488	486	485	482	480	40,6	34,5	16,2	12,2	10,2	4,1	513	VL1

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VL2 Laboratorista: Carlos

	., ,				LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStaca		Lo	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	2	EIXO	500	487	474	471	470	470	468	65,0	38,6	12,2	6,1	4,1	4,1	118	VL2
2	6	EIXO	500	485	472	470	468	466	465	71,1	40,6	14,2	10,2	6,1	2,0	103	VL2

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VL3 Laboratorista: Carlos

	W				LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStaca		L ₀	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	2	EIXO	500	489	487	486	484	483	481	38,6	16,2	12,2	10,2	6,1	4,1	140	VL3
2	4	EIXO	500	494	491	488	485	481	478	44,7	32,5	26,4	20,3	14,2	6,1	256	VL3

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VL4 Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStaca		Lo	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	1	EIXO	500	493	485	481	480	478	477	46,7	32,5	16,2	8,1	6,1	2,0	220	VL4
2	6	EIXO	500	488	480	478	476	474	471	58,9	34,5	18,3	14,2	10,2	6,1	128	VL4
	l			l	l		l	l	l	l	l	l	l	l		l	

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2.031

Trecho: Vias Internas Constante da Viga: 2,031
Subtrecho: VL5 Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStaca		L ₀	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	2	EIXO	500	480	476	473	472	470	469	63,0	22,3	14,2	8,1	6,1	2,0	77	VL5
2	4	EIXO	500	483	475	473	471	471	469	63,0	28,4	12,2	8,1	4,1	4,1	91	VL5

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VL6 Laboratorista: Carlos

LEITURAS EM 10-2 mm Bacia de Deformação (x 10-2 mm) RAIO Km/ Ponto Lado D0 D25 D50 D75 D100 D150 Obs. Estaca L₁₀₀ Lo L₂₅ L₅₀ L₇₅ L₁₅₀ LF (Lo-LF) (L₂₅-L_F) (L₅₀-L_F) (L₇₅-L_F) (L₁₀₀-L_F) (L₁₅₀-L_F) (m) 3 EIXO 500 485 482 480 479 473 462 77,2 46,7 40,6 36,6 34,5 22,3 103 VL6 2 6 EIXO 500 484 42.7 38.6 38.6 30.5 171 VL6 491 486 484 480 465 71.1 52.8

Local: PORTO DE IMBITUBA Data: 03/09/2020
Trecho: Vias Internas Constante da Viga: 2,031

Subtrecho: VL7 Laboratorista: Carlos

	I/m/				LEITU	RAS EM 1	0 ⁻² mm				В	acia de De	eformação	(x 10 ⁻² m	m)	R	AIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150			Obs.
	Lotada		L ₀	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L_0-L_F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	1	EIXO	500	485	476	473	472	470	468	65,0	34,5	16,2	10,2	8,1	4,1	,	03	VL7
2	2	EIXO	500	490	484	480	475	471	467	67,0	46,7	34,5	26,4	16,2	8,1		54	VL7

Local: PORTO DE IMBITUBA Data: 03/09/2020 Trecho: Vias Internas Constante da Viga: 2,031 Subtrecho: VA6-1

Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStata		Lo	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	1	EIXO	500	490	486	484	483	482	469	63,0	42,7	34,5	30,5	28,4	26,4	154	VA6-1
2	4	EIXO	500	489	484	482	479	477	462	77,2	54,8	44,7	40,6	34,5	30,5	140	VA6-1

Local: PORTO DE IMBITUBA Data: 03/09/2020

Trecho: Vias Internas Constante da Viga: 2,031
Subtrecho: VC3 Laboratorista: Carlos

					LEITU	RAS EM 1	0-2 mm				В	acia de De	eformação	(x 10 ⁻² m	m)	RAIO	
Ponto	Km/ Estaca	Lado								D0	D25	D50	D75	D100	D150		Obs.
	LStaca		Lo	L ₂₅	L ₅₀	L ₇₅	L ₁₀₀	L ₁₅₀	L _F	(L ₀ -L _F)	(L ₂₅ -L _F)	(L ₅₀ -L _F)	(L ₇₅ -L _F)	(L ₁₀₀ -L _F)	(L ₁₅₀ -L _F)	(m)	
1	1	EIXO	500	495	493	493	492	490	488	24,4	14,2	10,2	10,2	8,1	4,1	308	VC3
2	4	EIXO	500	495	494	493	492	490	490	20,3	10,2	8,1	6,1	4,1	0,0	308	VC3